
SIDN Server Measurements
Yuri Schaeffer1, NLnet Labs

NLnet Labs document 2010-003 July 19, 2010

1 Introduction

For future capacity planning SIDN would like to have an insight on the required
resources for hosting the .nl zone. We performed a series of simulations to test
memory, CPU and bandwidth consumption on a limited set of parameters.

The tests are repeated for an increasing percentage of delegations with a DS
record in the zone (0%, 10%, and 20%). These parameters are tested with 1, 10,
and 25 times the current query load on the .nl server.

SIDN provided three zonefiles, a packet trace, and a server. The experiments
ran on NLnet Labs’s test environment. A description of this setup is given in
Section 1.4. Sections 2 to 5 describe the experiment and end with a conclusion
in Section 6.

Revision 2: In addition, Section 7 describes differences between Linux’ and
FreeBSD’s network performance for DNS.

1.1 Zonefiles

SIDN constructed three zonefiles based on the current .nl zone. It has originally
about 4 million delegations, and is increased with 2 million synthetic delegations.
This is the expected size for 2013. To prevent skewed results, the added delega-
tions have the same average label and name length as the original delegations.
In the three versions of the zone 0, 10, or 20 percent of the delegations get one
or more DS records. Which delegation gets DS records is picked random for
each file. These delegations get between 1 and 4 DS records from an uniform
distribution.

All versions are signed using a 2048 bit KSK and a 1024 bit ZSK. NSEC3
will be used with 5 hash iterations and a salt length of 8.

1.2 Packet Trace

The packet trace is captured from one of SIDNs servers in February 2010. It
contains 75 minutes of DNS traffic. We will use this to simulate a realistic load.
Layer 2 and 3 addresses are rewritten to suit our test setup, the rest of the
messages remain unmodified.

The query rate as found in the trace is 2496 qps on average, about 1.7 mbps.

1Yuri@NLnetLabs.nl

mailto:yuri@nlnetlabs.nl


2 CPU USAGE

1.3 Server

The provided server (HP ProLiant DL360G6) has 2 Intel Xeon CPUs (E5504)
with 4 MB cache. Both CPUs have 4 cores and are clocked at 2 GHz. It carries
16 GB of RAM. The operating system is Ubuntu 10.04 with a 64 bit kernel:
2.6.32-22-server. The server contains 2 on board Broadcom BCM5709 gigabit
Ethernet adapters.

1.4 Test Setup

Apart from the SIDN provided server the test setup contains 2 more machines.
Both running an up to date 64 bit Debian Testing Distribution. One of these
machines will be used to replay the packet trace (henceforth Player), the other
will only listen for responses (Listener). These machines are tested to be fast
enough to perform sustained replay or capture at the speeds required for our
experiments.

Network All machines are connected with one interface to a gigabit Ethernet
switch dedicated to these machines only. The tests run on this network to prevent
regular network traffic from interfering with the experiments. Each packet in the
trace is modified to have the correct source and destination MAC address, and
destination IP address. The source IP address however is set to that of Listener,
so that Player does not have to take care of handling the responses. A firewall
rule on Listener is added to prevent it from sending ”icmp-port-unreachable”
messages back to the server.

Software The server has both BIND as NSD installed. The BIND version
is 9.7.0-P2 (2010-05-19), it is configured with --enable-threads and all other
options left at their default. NSD is taken from the SVN trunk at r3003 (2010-06-
15) with all options default. Libssl 0.9.8 is installed from the Ubuntu repository.

2 CPU Usage

The server (Section 1.3) has a total of 8 cores at its disposal for running the DNS
software. Using all cores for the daemon is not necessarily the most optimal
solution. Before we do our actual testing we determine the amount of processes
or threads we will use for each daemon. This optimum is found by searching for
the highest throughput for each number of cores used (1 to 8) in terms of bytes
per second.

NSD has the highest throughput using 3 server processes, although with 2
server processes it is just slightly slower. BIND profits from each added thread,
it reaches it’s maximum throughput at 8 threads. There is no limitation for the
amount of processes NSD can handle. When adding more processes the usage of
each (by NSD used) core will decrease. This is likely caused by the network stack
of the operating system where only one single process can use a socket at once.
It should be noted that both NSD and BIND have about the same maximum

2



2 CPU USAGE

throughput at this point, about 250 Mbps responses output with about 60 Mbps
queries as input.

Additionally we ran the same test with an echo daemon which got forked after
the bind to port 53. The echo daemon runs in a tight loop where the received
message is directly sent back to the source, no computation is done. Using a
single process gave us the highest throughput, 130 Mbps input and 130 Mbps
output. For each added process the performance of the echo daemon decreases.

For all further tests we configured NSD to use 3 processes and BIND to use
8 threads.

2.1 Measurement

For both NSD and BIND we replay the original query trace at 1, 10, and 25
times the original speed. We have logged the accumulated idle percentage of all
processors and derived CPU usage from this. This way we have user and system
usage captured in a single value.

All tests ran for about 3 minutes (we have 75 minutes of data and a 25×
speedup) and are sampled about 50 times. The percentages given are for all
eight cores, this means that for NSD there is less room for growth than seems to
be at first glance.

Replay speed
Percentage DS 1× 10× 25×

0% 5.1 (0.8) 14.4 (1.4) 28.8 (1.8)
10% 5.1 (0.8) 14.9 (1.4) 29.0 (2.2)
20% 5.7 (1.1) 15.2 (1.3) 29.7 (1.8)

Table 1: CPU usage for NSD in percent, standard deviation between parentheses.

Replay speed
Percentage DS 1× 10× 25×

0% 5.8 (0.6) 36.0 (2.0) 73.4 (1.6)
10% 5.5 (0.3) 36.2 (2.4) 73.7 (1.8)
20% 5.5 (0.5) 36.0 (2.6) 72.8 (1.4)

Table 2: CPU usage for BIND in percent, standard deviation between parentheses.

Table 1 and Table 2 show CPU usage for both programs. The figures are
skewed as the programs use a different amount of cores (3 and 8) with the CPU
usage given for all 8 cores. When correcting1 for this, the values are very similar.
Both programs seem to scale the same way on this hardware.

1NSD is configured to use 3 out of 8 cores. To get a realistic value one should multiply the
NSD values by 8

3

3



4 BANDWIDTH USAGE

3 Memory Usage

The memory usage is taken from /proc/<PID>/smaps2. Table 3 shows the mem-
ory usage for both programs as well as the disk size of the zonefile. Note that
since both programs are authoritative only and no caching is done, memory usage
remains constant over time. Also, the amount of threads or processes has little
impact.

Percentage DS NSD BIND Zonefile

0% 2.9 GB 1.5 GB 0.5 GB
10% 4.4 GB 2.1 GB 1.0 GB
20% 5.9 GB 2.7 GB 1.5 GB

Table 3: Memory usage for NSD and BIND, plus the size of the zonefile.

When extrapolating these values to 100 percent signed DS records we would
see a memory requirement of 18 GB for NSD and 7.5 GB for BIND.Our test
system has 16 GB of memory installed at present. SIDN estimates that in 2013
the zone will be no larger than 6 million delegations and at most 20 percent of
those will be signed. Given these estimations and increasing memory capacity
over the years. This memory consumption does not have to become a limiting
factor in the near future. In certain unlucky conditions NSD can take briefly up
to 4 times the normal memory consumption. We do not know how the BIND
daemon behaves in the worst case scenario.

4 Bandwidth Usage

For increasing amounts of DS records we measured the bytes on wire. The data
is read from /proc/net/dev3. Not all queries where answered but on average
99.99% succeeded for each test. With each measurement the complete query
trace was replayed.

MB out
Percentage DS MB in NSD BIND

0% 919 MB 4330 MB 4199 MB
10% 919 MB 4456 MB 4325 MB
20% 919 MB 4371 MB 4240 MB

Table 4: Network usage by replaying whole trace.

2We used ps mem which finds the most accurate method available: http://www-
.pixelbeat.org/scripts/ps mem.py

3This is the same information netstat -s uses, but netstat has a bug not displaying this
information correctly.

4



5 SPAMRUN

We have 2 observations about the data in Table 4. The first one is that with
10 percent DS records for both NSD and BIND the total reply size is much larger
than for 0 and 20 percent. Which delegations are signed was chosen randomly
during generation of the zonefiles and differ between files (The set DS records in
the 10% file is not a subset of the 20% file). The delegations might be chosen
unfortunately in one of the two cases for the given packet trace.

The second observation is that BIND consistently outputs 131 MB less than
NSD (about 3 percent). A sample of 100 responses shows that both daemons
return the same answer each time but BIND compresses slightly better.

With these 6 measurements there is no clear trend visible in the reply size.
The average response grows but not by much. A possible reason for this is the low
amount of NXDomain responses, about 2.9 percent. This type of response will
increase the most in size when serving DNSSEC data. Of all the incoming queries
in our trace 50 percent had EDNS0 with the DO bit set. Past measurements at
the K-root server has shown that NXDomain queries are less likely to have the
DO bit set than queries for existing domains[1].

Although one of our zonefiles has 0 percent signed delegations the zone is still
signed. Each existing but unsigned delegation will be delivered including a proof
that no signatures for that name exist. Those responses will generally be larger
than signed delegations, but smaller than NXDomain responses. We can see this
in the SIDN provided trace which includes queries as well as responses, the trace
is made without DNSSEC enabled on the server. The total response size of the
replies in the unsigned variant is 2.0 GB.

5 Spamrun

In addition to a normal increase of traffic at the SIDN server we tested three
additional scenarios. Sometimes SIDN observes an unusual amount of NXDomain
responses from their servers. This is likely to be a side effect of someone sending
large quantities of spam to or from non existing domains. Peaks are seen with 4
times more NXDomain responses than regular responses. With DNSSEC enabled
this could potentially increase demand on resources. For non-existing names
an authoritative server using NSEC3 needs to perform some additional hashing
operations in order to find the closest encloser and next closer.

This test involves reordering our query trace which causes the timing of the
packets to be shuffled as well. We must tell tcpreplay to replay packets at a
specific rate (Mbps) to not confuse the program with the mixed timing. The
average rate of the original trace for incoming packets is 1.7 Mbps. The three
scenarios are:

1. The current bandwidth of ‘good’ queries and 4 times that bandwidth with
‘bad’ (NX) queries. The situation which is often seen now (8.5 Mbps, 5×
current bandwidth).

2. The current bandwidth of ‘good’ queries and 24 times that bandwidth with
‘bad’ queries. (42.5 Mbps, 25× current bandwidth). The same situation as

5



6 CONCLUSION

1., but with a more intense spamrun.

3. A spamrun as seen in the present, like 1., but with ‘good’ and ‘bad’ queries
equally amplified (42.5 Mbps, 25× current bandwidth).

All scenarios are tested with NSD and the zonefile with 20 percent of the
delegations signed. For comparison we replayed the same amount of queries as
in Section 4.

scenario CPU Usage Traffic out

1 10.4 (1.4) 4338 MB
2 30.1 (2.0) 4364 MB
3 30.6 (1.9) 4338 MB

Table 5: CPU usage and transmitted bytes for the 3 spamrun scenarios using
NSD.

For this test the configuration and the zonefile is the same as in previous tests.
Thus memory consumption will not change. The CPU usage in these scenarios
(Table 5) is similar to Table 1. Again 3 of 8 cores are used for this test. The
ratio of NXDomain responses seems to have no influence on performance.

6 Conclusion

We tested the throughput of BIND with up to 8 threads. The throughput in-
creases with every added thread and equals NSD’s throughput with 3 processes.
Adding more processes for NSD does in fact decrease the throughput. The net-
work stack of the operating system is likely to be the bottleneck for this system.

We have not seen a clear bandwidth increase for an increasing number of
signed delegations. However, enabling DNSSEC without signing any delegations
does double the required bandwidth.

The ratio of NXDomain responses does not influence the bandwidth in the
three tested scenarios. Responses with unsigned delegations will have a similar
size increase as NXDomain responses when enabling DNSSEC with opt-out.

Both daemons show no additional CPU load when increasing the number
of DS records. Also, in the ‘spamrun’ scenarios CPU load is similar to normal
operation.

Memory usage of both daemons is not likely to form a problem in the fore-
seeable future. Even for NSD which requires a lot more memory than BIND.

Further Study It seems that the current performance is limited by the network
stack. The operating system can not handle packets fast enough to keep NSD
(and perhaps BIND) busy. For future testing it might be interesting to try and
push performance on this hardware further. We could use an other operating
system such as a BSD variant to compare the influence of the network stack.

6



7 EPILOGUE

One could also try to improve performance by using multiple network inter-
faces at the same time.

7 Epilogue

During the experiments we observed that both BIND as NSD had the same
maximum throughput on this hardware but with a different amount of used
cores. BIND reached its maximum at 8 cores, NSD reached it using 3 cores.
Adding more processes for NSD did not increase performance. This indicates a
common bottleneck other than CPU for NSD and BIND.

7.1 Concurrency

On the same hardware an installation of FreeBSD 8.0 was added. Figure 1 Shows
NSD with the same .nl zone as used in the other tests. NSD is configured with
1 to 8 processes on both operating systems. By replaying the packet trace at
various speeds the maximum output was estimated. note: for FreeBSD, at 7 and
8 cores, the output was very unstable.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8

M
a
x
im

u
m

 o
u

tp
u
t 
(M

b
p
s
)

Configured NSD processes

NSD Throughput on BSD and Linux

.nl zone, 20% DS

FreeBSD

Linux

Linear

Figure 1: NSD performance on Linux and FreeBSD by used cores. Linear plot
for reference on scaling.

With enough cores available NSD’s performance triples when switching from
Linux to FreeBSD.

For further testing we installed Iperf4. The default packet size of Iperf is
1480 Bytes. Using that size we see a bandwidth utilization of around 860 Mbps
independent of the amount of cores used by Iperf. This is not very realistic since

4http:// iperf.sourceforge.net/

7



7 EPILOGUE

DNS queries are much smaller, usually around 100 Bytes. With 100 Byte packets
280 Mbps is reached at maximum, which is close to NSD’s performance on Linux
in Figure 1. FreeBSD is better than Linux at handling a large amount of tiny
packets.

7.2 Performance Degradation.

In the beginning of the research we determined to maximum output for NSD
and BIND on Linux. In this process we noticed that, when offering more traffic
than the DNS software could handle, the performance would decrease. FreeBSD
showed such behavior to a far lesser extend. In Figure 2 NSD’s output for given
input on both OS’s. Note that for this setup and packet trace the responses are
about 5 times larger than the queries, for 30 Mbps input 150 Mbps output is
expected.

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

M
e

a
s
u

re
d

 o
u

tp
u

t 
(M

b
p

s
)

Offered input (Mbps)

Performance degredation NSD on BSD and Linux

1 process, .nl zone, 20% DS

FreeBSD

Linux

Figure 2: NSD output when offered an excessive amount of input.

NSD is configured to use just 1 process to make sure the CPU bottleneck is hit
early. The maximum output using 1 process is 130 to 146 Mbps. Figure 1 shows
that on both operating systems the output can be higher given enough cores,
and thus the CPU is the bottleneck here. Yet for higher offered bandwidths the
performance on Linux decreases. As soon as there are not enough processes ready
to accept incoming packets, Linux is to busy handling the excess load or to busy
to handle NSD’s responses. Either way, letting the bandwidth grow towards the
maximum capacity on Linux is a risk. When the maximum capacity is exceeded
on Linux, the capacity will decrease. This amplifies the damage done by an
attack where the server is overloaded with queries. FreeBSD shows this behavior
just slightly.

In retrospect, on this particular machine configured with 3 processes, this

8



REFERENCES

effect will probably not be observed before 29 times the current incoming band-
width is reached.

References

[1] NLnet Labs, K-root TCP load measurements, http://www.nlnetlabs.nl/-
downloads/publications/k-root tcp measurements.pdf, February 2010.

9


	Introduction
	Zonefiles
	Packet Trace
	Server
	Test Setup

	CPU Usage
	Measurement

	Memory Usage
	Bandwidth Usage
	Spamrun
	Conclusion
	Epilogue
	Concurrency
	Performance Degradation.


