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Abstract

Although DNSSEC was first defined in 2005, its deployment, both at
DNS servers and at DNS recursive resolvers, is still problematic. In this
project, we intend to develop a discovery method to ensure DNSSEC in-
formation can be delivered to the end host. For this purpose, we used
RIPE ATLAS to study the current state of DNSSEC aware and DNSSEC
validating resolvers, and define a course of action from that information.
Our results concluded that 64% of the recursive resolvers where able to
perform basic DNSSEC queries, whereas only 56% could provide valid
proofs of denial of existence, and only 40% were able to process authen-
ticated wildcard information. Our proposed discovery method relies on
using the default recursive resolvers and, in case of failure, proceed to use,
in this order, the ISP recursive resolver, a public DNS resolver, or perform
full resolving recursion from the host.
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1 Introduction

1.1 DNS: Stub and Recursive Resolvers

Domain Name System (DNS)[10] is a distributed name system to be used by
computers connected to a private network or the public Internet. It is mostly
used to translate addresses easily readable and memorized by humans into IP
addresses which can be used by computers. Additionally, it can also be used
as an abstraction layer, as servers can switch locations or IP addresses, while
maintaining their human-readable name.

DNS is based in a distributed architecture, where authoritative name servers
can delegate authority of a certain subdomain to another name server. This
method circumvents the need for a centralized database, providing administra-
tive, load and geographical scalability.

As queries to the DNS system require multiple recursive queries to the root
servers and the Top Level Domains (TLDs) servers, and each subdomain down
until the queried domain is found, DNS uses two different resolvers: stub re-
solvers and recursive resolvers. Stub resolvers are hosted on each end user ma-
chine, and are used to forward queries needed from applications to a recursive
resolver. Recursive resolvers receive queries from stub resolvers and proceed to
do all the queries needed to find an answer, and returning it back to the clients.
This separation allows for a shared caching system between many stub resolvers,
effectively reducing the workload and response times of DNS queries.

1.2 DNSSEC Functionality

DNS was not, however, designed with any kind of security features. This has
lead to a number of issues with the system, one of the most common being DNS
cache poisoning[13].

To overcome these issues, Domain Name System Security Extensions
(DNSSEC)[1, 2] was introduced. DNSSEC provides authentication of the DNS
answers by adding public key cryptography features –in the form of key and
signature resource records–, although the information can still be seen by unau-
thorized users, as it is not encrypted.

1.3 DNSSEC Limitations

Although DNSSEC fullfills its purpose, it still suffers from a number of prob-
lems:

1. The communication between the local stub resolver and the recursive re-
solver is still vulnerable. There have been studies[4] attempting to secure
this last mile of the communication, but the solutions are limited.
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2. The end user has no control over the configuration of the recursive resolver,
so it cannot determine whether it is protected against DNS hijacking1.

3. The adoption of DNSSEC comes with the possibility of leaving domains
unavailable to users that use recursive resolvers that perform DNSSEC
validation, in case there is any problem with the resource records of the
domains.

In recent years, this has been a recurring problem that has repeated a num-
ber of times. In 2012, ”nasa.gov” was unintentionally blocked to Com-
cast users when they adopted DNSSEC2. ”.gov” zones became temporar-
ily unavailable in 2014 because of a DNSSEC misconfiguration3. Similarly,
HBO NOW services were recently blocked (2015) due an invalid signature
at their servers4.

A common issue with all these cases was that the Internet Service Provider
(ISP) companies were the first to receive the blame for the malfunction,
even though the cause of the problems resided on these services and not
the DNS resolvers. This results in an inclination of the ISPs to not perform
validation at their resolvers.

4. DNS-Based Authentication of Named Entities (DANE)[8] implementa-
tions require to perform the authentication validation at the local ma-
chine, therefore colliding with the DNS recursive resolvers that perform
the validation themselves.

1.4 This Document

The problems stated in Section 1.3 could be easily addressed by using a ma-
chine stub resolver as a recursive resolver. However, this solution disrupts the
scalability of the DNS service, as caching mechanisms could be used only locally.

The goal of this project is to define a mechanism for a local resolver to deter-
mine the best course of action when the previous issues occur –or when the DNS
queries are blocked–, trying to find the best trade-off between performance and
functionality. To this end, we will study the current situation of DNS recursive
resolvers through RIPE ATLAS5, and use that information to design a system
that can deliver DNSSEC data to the final user.

The document is structured as follows:

Section 2 describes the most important references and bibliography used during the
course of this project.

1Information available at: http://www.gohacking.com/dns-hijacking/
2Source: http://bit.ly/1GOrHxR
3Source: http://bit.ly/1gbP7aP
4Source: http://bit.ly/1GoasVi
5Information available at: https://atlas.ripe.net/
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Section 3 states the research questions this project aims to answer.

Section 4 describes the infrastructure used during this project, and how the mea-
surements should help solve the stated research questions.

Section 5 explains how the measurements are performed, how the results were fil-
tered and which subset of the results we focused on for our research.

Section 6 describes the results obtained from each one of our measurements.

Section 7 provides detailed information on how the results were used to design a
discovery method for DNS stub resolvers.

Section 8 gathers the conclusions from this research.

Section 9 closes this document, providing insight on possible topics to extend the
research performed in this project.
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2 Related Work

2.1 DNS Deployment Measurements

There has been a number of measurements of the DNSSEC deployment using
diverse methods[6, 11, 12]. We have used that previous research as an inspiration
for our project. The measurements performed during our research update the
state of these previous measurements, and we focus on analysing the responses
obtained by querying wildcard and non-existing DNS domains. Additionally,
we studied the differences on the results obtained by using the DNS Checking
Disabled (CD) bit, used to inform the recursive resolvers that the validation of
the results is to be performed locally. The option of using the DNS CD bit is
a feature that was recently introduced into RIPE ATLAS during the course of
this project.

2.2 DNS and DNSSEC implementations

As this project required technical understanding of the low-level specifications
of DNS and DNSSEC, the original RFCs[1, 2, 10, 14] were used regularly. In
addition to these documents, other information sources publicly available on the
Internet were used[5, 7].
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3 Research Questions

3.1 How can a stub resolver use a discovery method to
process data from a recursive resolver?

The main goal of this project is to deliver a course of action for machines at-
tempting to retrieve DNSSEC data, in such a way that the caching mechanisms
of DNS are used as much as possible, only falling back to full recursion from
the stub resolver in the worst-case scenario. To answer this question, we define
a subquestion to provide insight on how this procedure should be implemented.

Definition In our project we distinguish two types of DNSSEC resolvers.
DNSSEC aware resolvers are those who can perform DNSSEC operations.
DNSSEC validating resolvers are those that, besides being able to execute
DNSSEC queries, also validate the results of these queries.

3.1.1 What is the current state of DNSSEC aware resolvers deploy-
ment?

Measuring the status of DNSSEC from the point of view of DNS resolvers
is an important step to define a course of action for DNS stub resolvers. We
will study the status of DNSSEC deployment using RIPE ATLAS, which we
describe in detail in Section 4.2.

3.1.2 What is the current state of DNSSEC validating resolvers de-
ployment?

During the course of our research, RIPE implemented an option on their API
to define the value of the Checking Disabled bit of DNSSEC. We used this
new feature to determine how many DNS resolvers were actually performing
DNSSEC validation by querying domains with bogus records.
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4 Methodology

4.1 Used Infrastructure

During the course of this project, we had access to the infrastructure of NLnet
Labs and the OS3 MSc. The material used included:

1. The RIPE ATLAS probe network, further discussed in Section 4.2.

2. The DNS server of NLnet Labs, to perform DNS queries directed to it
from the RIPE ATLAS probes, in order to discover the recursive resolver
IPs used by these probes.

3. To schedule and retrieve experiments we used the RIPE ATLAS API
through Python scripts. These scripts were written in Python 2.7.9, and
we used extensively the dpkt6 library to parse DNS queries and answers.

4.2 RIPE ATLAS

RIPE offers to individuals and organizations the possibility to acquire probes,
small devices which can be queried from their website and API to perform a
variety of operations. During this project, there was an average of 8200 probes
connected during our experiments. These probes are spread across the globe,
although a significant majority is located in Europe7.

During our project, we queried the full set of probes available at a given time in
diverse occasions to perform DNS queries from them and get the corresponding
answers. Although this can be considered a small set of values to determine the
current state of the Internet as a whole, we deemed it to be enough to be used
as a indicator of the status of DNSSEC aware resolvers, after proper filtering of
the results. The details of the measurements performed and the processing of
the results are gathered in Section 5.

4.3 Answering the Research Question

To answer the main research question, How can a stub resolver use a discov-
ery method to process data from a recursive resolver?, we will first enumerate
the different possibilities available. Then, with the help of the gathered results
from the RIPE ATLAS infrastructure, we will attempt to order these possible
solutions in the most effective way to achieve a good trade-off between function-
ality (delivering DNSSEC to the final applications) and efficiency (maintaining
the DNS scalability through caching methods).

6Information available at: https://pypi.python.org/pypi/dpkt
7Source: https://atlas.ripe.net/results/maps/density/
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5 Procedure Design

To obtain a better understanding about the current DNSSEC deployment
situation, we designed and performed a series of measurements. In this Section,
we will discuss the details of these measurements, including the specifications
of the queries performed, how the results were filtered, and which subset of the
retrieved data we studied.

The results of the measurements described there will be gathered and dis-
cussed in Section 6.

5.1 Types of Measurements

We prepared six different types of measurements through RIPE ATLAS, each
one of them querying all the available probes. These experiments were:

1. Basic DNS resolving: As our first experiment, we wanted to determine
which percentage of the probes had basic DNS capabilities. Additionally,
we planed the experiment in such a way that we could get the IP address
of the DNS recursive resolver used by the probe, as we discuss in Section
5.1.1.

2. Basic DNSSEC resolving: As a second step, we also wanted to determine
the number of DNSSEC aware resolvers, explained in Section 5.1.2.

3. NXDOMAIN handling: Ascertaining how many recursive resolvers were
capable of properly handling NXDOMAIN answers was also interesting for
our research. The details of this experiment are documented in Section
5.1.3.

4. Wildcard handling: Finally, in a similar way to the NXDOMAIN queries,
it was also interesting to conclude how many resolvers could properly
handle wildcard domains, as discussed in Section 5.1.4.

5. Validating resolvers: Through the use of the CD bit of DNSSEC queries,
we gathered information about how many recursive resolvers were val-
idating results from queries, with the experiments described in Section
5.1.5.

6. Evaluating alternative DNS resolvers: DNS offers a redundancy mecha-
nism, allowing users to specify more than one recursive resolver to query.
We want to evaluate if, in the default configuration of the probes, backup
resolvers provide different answers than the primary resolver. We develop
this further in Section 5.1.6.
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5.1.1 Basic DNS and obtaining backdoor DNS recursive resolver IP
address

This first experiment served two different purposes. First, it was meant to
provide insight on the amount of probes that could properly use DNS. This
information was used as to filter the probes which could not get basic DNS
answers from the remaining measurements. Second, we also intended to discover
the IP address of the recursive resolvers used by these probes.

Our interest in the second goal for this measurement resides in the fact that
many home routers –and equipment in small companies– are intended to be as
cheap as possible, and are usually not up to date with recent standards, such
as DNSSEC. This means that although most recursive resolvers from ISPs can
properly process DNSSEC queries, home routers cannot forward that informa-
tion to the end users because they are not DNSSEC aware. An example of this
situation is shown in Figure 1.

Figure 1: DNSSEC may be blocked by DNS forwarders.

If there is a DNS forwarder blocking DNSSEC, end users could still attempt
to directly query their ISP recursive resolver instead of their assigned DNS
resolver, effectively bypassing that limitation. Although this partially handicaps
the DNS caching features, the caching mechanism at the ISP resolver remains
intact. This alternative procedure is shown in Figure 2.

However, from the end user point of view, it is difficult to determine the IP
address of the DNS resolver that is actually performing the recursive resolving.
One way to find it is to query a DNS server that can reply customized answers.
To test this, he had a special domain at the NLnet infrastructure that answered
queries replying back the IP address that made the final query. The direction for
this domain is echo.v4.nlnetlabs.nl. There is also a similar domain name that
can be queried to discover IPv6 addresses, echo.v6.nlnetlabs.nl, although we

11



Figure 2: Bypassing DNS forwarders when they are not DNSSEC aware.

limited our experiments to IPv4 to avoid conflicts with how results might change
from the deployment of IPv6, and not causes related to DNS infrastructure.

This method allows for end users to discover the IP of their DNS recursive
resolver, without needing to change or extend the current DNS protocol, or
having to use a different Internet protocol. Nevertheless, it has the downside
that it requires a DNS server having a domain dedicated for this purpose.

The details of the query used in this measurement are described in Table 1.

Argument Value
Query address echo.v4.nlnetlabs.nl.
Record type A (IPv4)

Use probe resolver Yes
RD bit Yes
DO bit No

UDP payload size 512 bytes

Table 1: Basic DNS measurement options.

5.1.2 Basic DNSSEC

Our second experiment focuses on discovering which probes are querying re-
cursive resolvers that can handle basic DNSSEC queries. For this purpose, the
DNS queries will ask for the DNSKEY records of the root server. In this case,
we set the DO bit to specify that we desire a DNSSEC-enabled answer with
signature records.

The options for the queries used in this measurement were set as follows in
Table 2.
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Argument Value
Query address . (root server)
Record type DNSKEY

Use probe resolver Yes
RD bit Yes
DO bit Yes

UDP payload size 4096 bytes

Table 2: Basic DNSSEC measurement options.

5.1.3 Test NXDOMAIN Queries

Although DNS resolvers might be able to process basic DNSSEC queries, it
is possible that they cannot process certain special queries because of miscon-
figuration, bugs on the implementations or running outdated software versions.
One of these special cases are queries that target a domain that does not exist
(NXDOMAIN). This is a complex situation for DNS, as to achieve authenti-
cation, the records must be signed using the key from the server. However,
for such non-existent records, there is nothing to sign prior to the request, and
therefore they require a special treatment.

On most implementations, this is achieved through using NSEC and NSEC3
resource records. A NSEC record marks the space covered from a certain record
N to the next one, as well as stating all the types of resource records available
for N . A simplified example of this is shown in Table 3. In this example, if a
client asks for the IP of the domain g.domain.com , which does not exist, the
server would answer with the NSEC record from c.domain.com , which is the
responsible for the proof of denial of existence for that particular name.

NAME TYPE RDATA
a.domain.com. AAAA 1234::4321
a.domain.com. RRSIG Digital Signature for the Resource Record Set
a.domain.com. NSEC c.domain.com. [AAAA, NSEC, RRSIG]

c.domain.com. A 1.3.3.7
c.domain.com. RRSIG Digital Signature for the Resource Record Set
c.domain.com. NSEC j.domain.com. [A, NSEC, RRSIG]

j.domain.com. A 145.100.104.171
j.domain.com. TXT ”Hello World”
j.domain.com. RRSIG Digital Signature for the Resource Record Set
j.domain.com. NSEC a.domain.com. [A, TXT, NSEC, RRSIG]

Table 3: NSEC records example.
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This method, however, allows malicious users to obtain the entire dataset
of domain names available on a specific server, a technique commonly known
as zone walking. For this reason, many servers use NSEC3 records instead of
NSEC, which work in the same way but use hash the names of the domains
instead of having them in plain text. This defense mechanism, however, can
be broken, and it is still possible to enumerate DNS zones8 that use NSEC3.
Nevertheless, zones that have a large amount of delegations (such as TLDs) still
favour NSEC3 because of its OPT-OUT flag functionality, which reduces the
amount of signatures needed for a zone, hence making the zone file smaller[9].

In this case, we made two different experiments, to test the ability of recursive
resolvers to process both NSEC and NSEC3 records. To test NSEC records we
queried the root domain, and we queried the Netherlands domain (.nl) to check
the NSEC3 handling. Table 4 summarizes the details of these queries.

Argument Value (NSEC test) Value (NSEC3 test)
Query address nonexistingdomain. nonexistingdomain.nl.
Record type A (IPv4) A (IPv4)

Use probe resolver Yes Yes
RD bit Yes Yes
DO bit Yes Yes

UDP payload size 4096 bytes 4096 bytes

Table 4: DNSSEC NXDOMAIN handling measurement options.

5.1.4 Test Wildcard Queries

Similar to NXDOMAIN answers, another common source of issues are wild-
card records. This is a result of different DNS implementations handling them
differently. Wildcard records are records that have a single asterisk (*) charac-
ter as their leftmost label, and that are intended to match non-existent records
that would match the wildcard. As an example, *.domain.com. should act as
a wildcard record, and match queries that do not have an associated resource
record, such as xyz.domain.com. (in our Table 3 example). Wildcard an-
swers must provide proper proof of the existence of the wildcard record, as well
as proof that the queried domain does indeed not exist.

To test this DNS functionality, we created wildcard records in the nlnet-
labs and nlnet domains, as the root servers and TLDs –at least the most
common ones, such as .nl and .com– did not have wildcard records. This
wildcard records were introduced as *.xavier.nlnetlabs.nl. (NSEC) and
*.xavier.nlnet.nl. (NSEC3). Table 11 includes a description of the queries
performed in this measurement.

8Source: http://dnscurve.org/nsec3walker.html
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Argument Value (NSEC test) Value (NSEC3 test)
Query address wildcardtest.xavier.nlnetlabs.nl. wildcardtest.xavier.nlnet.nl.
Record type A (IPv4) A (IPv4)

Use probe resolver Yes Yes
RD bit Yes Yes
DO bit Yes Yes

UDP payload size 4096 bytes 4096 bytes

Table 5: DNSSEC NXDOMAIN handling measurement options.

5.1.5 DNSSEC validation test with CD bit

In addition to the previous tests, we defined a measurement to check the num-
ber of recursive resolvers performing DNSSEC data validation, using the CD
bit of DNSSEC. Querying a domain with bogus DNS records, such as dnssec-
failed.org, allows us to determine how many recursive resolvers properly vali-
date the data they receive. The details of this measurement are as described in
Table 6.

Definition The DO bit in DNS is used to ask the recursive resolver to re-
trieve and validate –if possible– resource records corresponding to DNSSEC
data. In addition to this, the CD bit can be also set to specify that the host
wants to validate the data itself, instead of delegating that responsibility to
the recursive resolver.

Argument Value
Query address dnssec-failed.org.
Record type A

Use probe resolver Yes
RD bit Yes
DO bit Yes
CD bit Yes/No

UDP payload size 4096 bytes

Table 6: Recursive resolvers DNSSEC validation measurement options.

5.1.6 Evaluating alternative DNS resolvers

Most DNS resolving implementations include one or more backup recursive
resolver addresses in case the default resolver does not return an answer. It
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is interesting for our research to determine whether these alternative servers
provide significantly different answers. If the answers are mostly the same, then
these alternative resolvers could not be efficiently used for our discovery method.
Otherwise, if a probe can get different answers from each one of its alternative
recursive resolvers, it would be interesting to study this line of work further,
and examine the validity of these answers.

To study this we will individually process the answers of each node using
the data from RIPE ATLAS, and examine interesting parameters, such as how
many of these probes do use backup DNS resolvers, and whether these secondary
resolvers return different answers for the same query.

5.2 Filtering Results

In order to reduce the bias of the measurements, we did some minor filtering
of the results. In this Section we document which data was filtered and the
reasoning behind the filter.

5.2.1 Exclude public DNS servers

During our first testing measurements, we noticed that a considerable amount
of the probes –approximately 15% of the answers– were querying the Google
DNS server, as its IP address is well-known and easy to remember (8.8.8.8 in
IPV4). As having such amount of queries to the same public DNS resolver
could distort the results of the measurements, we decided to identify the most
commonly used resolvers, and exclude those who belonged to a public DNS
resolver.

Table 7 summarizes the addresses we excluded from our measurements.

IP Addresses Owner
8.8.8.8, 8.8.4.4 Google DNS

2001:4860:4860::8888, 2001:4860:4860::8844 Google DNS
208.67.220.220, 208.67.222.222 OpenDNS (non-DNSSEC)

Table 7: Filtered DNS server addresses.

5.2.2 Exclude loopback addresses

Similarly to the public DNS servers, we also noticed a significant number of
probes using a loopback address (127.0.0.1) for their queries, meaning their
stub resolver acted as a recursive resolver. As that is undesirable due the lack
of scalability, and we intend to use the stub resolver as a recursive resolver
only as a last resort mechanism in our discovery method, we excluded probes
performing queries directed to these addresses as well.
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5.2.3 Handling timeouts and format errors

Besides the filtering of addresses, another problem that required to be fixed
were the nodes that were not behaving as expected. From these, the majority
(over 99%) corresponded to recursive resolvers not answering, so the probes that
made these queries returned this timeout error. A minority of errors were clas-
sified as Unreachable Network and Invalid Argument in the response retrieved
from RIPE ATLAS.

Nodes answering with these error messages were excluded from the measure-
ment. However, other errors, such as returning an unexpected RCODE or re-
turning an invalid set of resource records, were not filtered, and used as part of
the study.

5.3 Studied Data

After filtering the list of probes, we needed to choose which subset of the data
retrieved from the remaining valid probes we wanted to focus on. Generally, for
all the experiments we analysed the returned RCODEs and resource records.

5.3.1 RCODEs

The Response CODE is a field of the DNS header set to 0 on queries, and
changed by the DNS server on the reply to summarize the result of the requested
query to the client. Generally, the expected –or desired– RCODE is 0. This is
the case for most of our measurements, with the exception of the NXDOMAIN
measurements, that are supposed to return a RCODE value of 3, indicating that
the requested name does not exist.

Additionally, it is to be expected that there will be a number of RCODEs with
a value of 2, indicating a Server Failure, in our measurement of the DNSSEC
validating resolvers. When using the CD bit, recursive resolvers should always
return the result of the queries, whether they are valid or not (with a RCODE
of 0). When the CD bit is not used, recursive resolvers that perform validation
should return such Server Failure answer if the data is invalid, whereas resolvers
not performing validation will keep sending answers with the 0 RCODE.

Appendix A summarizes the most used RCODEs.

5.3.2 Returned Resource Records

Besides the basic DNS measurement, all the other measurements are expected
to return a number of additional resource records with the answer. These include
the DNSSKEY resource record for the basic DNSSEC measurement, as well as
its corresponding RRSIG signatures. Similarly, we expect a number of NSEC
and NSEC3 records for the NXDOMAIN and wildcard handling measurements,
paired with their corresponding signature and Start of Authority (SOA) records.
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Appendix B includes a summary of the resource records that were relevant
for this study.
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6 Measurement Results

In this Section we discuss the results from our measurements. We first present
a number of considerations common to all measurements, and afterwards each
Subsection will discuss the results related to each one of them.

All measurements were performed at least three times, and all of them queried
the entire set of probes available at a certain moment, which always yield, ap-
proximately, 14.000 results. From these 14.000 results, we discarded approx-
imately 2.800 with the filters explained in Section 5.2. From the remaining
results, we also discarded those that gave errors, which left the valid dataset
that we studied with approximately 10.000 results (it should be noted that this
is not a 1:1 probe - result ratio, as some probes had more than one resolver).

From the valid dataset, there was always a number of probes (approximately
450) returning RCODE values of 1, indicating a Format Error, and others (ap-
proximately 80) returning values of 5, indicating a denied request. As these
numbers were constant and originating from the same probes, we deemed that
they probably had errors in their configuration. Additionally, for the sake of
simplicity we did also not include the A records –along with their corresponding
RRSIG records, in DNSSEC queries– in the tables summarizing the results of
our experiments.

All these numbers remained constant during the course of this project, with
minor differences –never exceeding 5%– that we attribute to probes going online
and offline.

6.1 Basic DNS and obtaining backdoor DNS recursive re-
solver

As expected, our first measurement returned a majority of No Error RCODEs.
The only erratic RCODEs received were, as we stated before in this Section,
part of a series of probes that do not properly process DNS queries. Being a
simple DNS query, there were no additional resource records to study.

We successfully retrieved the IPs of the ISP recursive resolvers during this
experiment, using the method described in Section 5.1.1.

6.2 Basic DNSSEC

As with the basic DNS measurement, the basic DNSSEC measurement did
not yield any unexpected results regarding RCODEs, as almost the entirety of
the returned values was again No Error.
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However, the obtained resource records showed a significant discrepancy.
There were a number of queries that did not return a resource record at all,
and queries that returned only two DNSKEY records –one for the Key Signing
Key and another one for the Zone Signing Key–, without a signature record.
The remaining queries returned the correct set of two DNSKEY records and
one RRSIG record. This information is showcased in Table 8.

Definition To simplify key management, most DNS servers use two dif-
ferent keys to sign information. The Key Signing Keys are used to validate
the Zone Signing Keys. In turn, Zone Signing Keys are used to sign the
different resource records present in a DNS zone, and provide that data in
the form of RRSIG resource records. This method permits the renewal of
keys and signatures on a zone without the need of changing the DS records
on the parent zones.

Received RR Percentage
No RR 7.94%

DNSKEY(x2) 28.34%
DNSKEY(x2) + RRSIG 63.71%

Table 8: Basic DNSSEC test returned resource records. Valid answers corre-
spond to the the last row.

6.3 Test NXDOMAIN Queries

The majority of the RCODEs obtained in the NXDOMAIN test measure-
ments had a value of 3, equivalent to a Name Error, as it was expected from
this query. However, a small amount (between 2 and 3.5%) of the probes re-
turned a RCODE value of 0, indicating No Error, which is incorrect for this
specific of query.

Both NSEC and NSEC3 measurements produced a similar percentage of valid
results, as can be seen in Tables 9 and 10. The difference between both valid
percentages is negligible, being slightly above 0.5%. In contrast, that success
rate of approximately 56% is noticeably below the 63.71% observed from the
previous experiment, implying that not all DNSSEC aware resolvers are able
to forward the entirety of the DNSSEC data to the probe that performed the
query.

When using the ISP resolvers as the recursive resolvers for our queries, instead
of the probe defined resolvers, the amount of successful DNSSEC queries went
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Received Resource Records Percentage
No RR 22.27%

Only SOA 21.49%
SOA + NSEC + RSIG(x2) 56.23%

Table 9: NSEC test returned resource records. Valid answers correspond to the
the last row.

Received Resource Records Percentage
No RR 12.44%

Only SOA 27.68%
SOA + RRSIG 3.62%

SOA + NSEC3(x2) + RSIG(x3) 0.58%
SOA + NSEC3(x3) + RSIG(x3) 55.67%

Table 10: NSEC3 test returned resource records. Valid answers correspond to
the the last row.

up to approximately 75%, which represents a 20 points increase over the original
values.

6.4 Test Wildcard Queries

Besides a very minor number of SERVFAIL RCODEs (below 0.25%), all
queries returned the expected No Error RCODE (0). As with the NSEC3 mea-
surement, this query returned a high variety of different resource records, as
shown in Table 11.

However, the valid answer for this query should return, at least, the IP address
of the domain and a NSEC resource record to provide proof that there was no
more specific result, both of them paired with RRSIG records. This minimum
valid answer was found in approximately 10% of the queries, while a considerable
amount of them –approximately 29%– returned, in addition to these, NS records
paired with a RRSIG record.

Ultimately, approximately 40% of the queries returned a valid answer. Com-
pared to the NXDOMAIN results, this percentage is considerably lower than the
previous 56%. We attribute this reduction in the amount of valid responses to
the fact that wildcard entries are complex and have a huge diversity of different
implementations, both in DNS servers and DNS resolvers.

Another interesting result from this measurement is that there are a number
of resolvers –approximately 18.7%– that could retrieve RRSIG resource records
for the A and NS records on their answers, but did not send the necessary
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NSEC/NSEC3 records for the complete answer. This means that these resolvers
actually DNSSEC aware, as they were able to retrieve RRSIG records, but could
not successfully retrieve the complete set of resource records required for a valid
DNSSEC wildcard query (or that DNS forwarders between the stub resolver
and the recursive resolver lost that information along the way).

Received Resource Records Percentage (NSEC3) Percentage (NSEC)
No RR 31.31% 29.85%
NS(x3) 7.19% 6.94%

NS(x3) + RRSIG 18.6% 18.7%
RRSIG + NSEC/NSEC3 8.88% 10.65%

NS(x3) + RRSIG(x2) + NSEC/NSEC3 29.22% 29.51%

Table 11: DNSSEC wildcard handling measurement options. The last two rows
correspond to the valid answers.

When attempting to run the same experiment using the ISP resolvers, the
amount of successful authenticated wildcard answers went up to roughtly 60% of
the answers. Similar to the NXDOMAIN measurement, this is a quite significant
increase in the number of valid responses.

6.5 DNSSEC validation test with CD bit

In the two measurements performed –using the bogus domain dnssec-
failed.org.– for this test, the returned RCODEs were enough to spot the dif-
ferences on the resulting datasets. With the CD bit enabled, recursive resolvers
were asked to not perform any kind of validation on the obtained DNSSEC data.
As such, all the received RCODEs had a value of 0, indicating No Error.

Setting the CD bit to zero, the returned RCODEs were gathered in two
different groups. The first group was still answering with a No Error RCODE,
and it accounted for approximately 74% of the results. The remaining 26% was
composed by responses with a RCODE of 2, indicating a server failure.

From these results we can distinguish the portion of DNS recursive resolvers
that actually validated the data they received, formed by the group of resolvers
included in the 26% that did answer with a server failure RCODE.

6.6 Evaluating alternative DNS resolvers

From the valid answers we retrieved from the previous measurements, we
studied the composition of these results on a per-probe basis. Over half of the
probes (51.40%) did not have an alternative DNS server configured. 41.41%
of the probes had one or more backup recursive resolvers, and they received
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the same answer for all their recursive resolvers. Finally, the remaining 7.17%
corresponds to probes who had one or more backup resolvers, and they did
provide different answers for the same query. The details of that small amount
of probes that had different answers are gathered in Table 12.

Used recursive resolvers Number of valid answers Amout of probes
2 0 8.46%
2 1 54.22%
2 2 4.99%
3 0 2.39%
3 1 12.80%
3 2 15.84%
3 3 1.30%

Table 12: Overview of the number of used resolvers compared to the amount of
them providing valid DNSSEC data (over the 7.17% of probes that had multiple
resolvers and received different answers from them)

From these results we can conclude that approximately 6.30% of the probes
that had different results on their answers had different resource records on
these answers, but were all valid for DNSSEC validation. Almost 10% of these
probes had answers with different resource records, but none of them provided
enough information to perform DNSSEC validation. The remaining 83.86% of
the probes had answers with different results, and from these only a part of them
contained valid DNSSEC proofs. This last group is the most interesting for our
research, as it contains the set of probes that could retrieve valid DNSSEC
information by querying their pre-defined alternative DNSSEC resolvers.
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7 Discovery Method

From the results gathered from our measurements, we can now design a dis-
covery method for a DNSSEC validating stub resolver to query, retrieve and
process DNSSEC data. We first introduce some considerations that will im-
pact on the format of that method, and afterwards we proceed to describe the
mechanism in detail.

7.1 Initial considerations

First, depending on the needs of the end user application, the stub resolver
should determine whether it is necessary or not to properly handle authenticated
NXDOMAIN and wildcard queries. Some applications might not need these
features, and be able to work as intended only with basic DNSSEC (or any subset
of these query types). If the application can work without these additional, more
complex features, it may require less steps to successfully deliver valid data to
the application.

Second, from the results of our last measurement we concluded that, in most
configurations, alternative recursive resolvers do not provide different answers.
This implies that if the primary recursive resolver is unable to answer a query,
the backup resolvers will most likely not be able to do so either. In conclu-
sion, although resolvers are still necessary to provide redundancy to the DNS
infrastructure, we will not consider them for our discovery method.

As a final consideration, it is important to note that for the validation to be
performed at the machine running the stub resolver, this resolver should set up
the CD bit on the DNS queries, to indicate to the recursive resolvers that the
validation will be performed at the host.

7.2 Method Development

In the best case scenario, the default configuration of a host will give him
access to DNSSEC data, without having to use any additional mechanism. Ac-
cording to our results, approximately 40% of the hosts are in this situation
(which raises up to 64% if the application does not require to process NXDO-
MAIN or wildcard queries).

If the default configuration is not enough to obtain DNSSEC information,
the host should first attempt to query directly the recursive resolver from its
ISP, avoiding intermediate forwarding. Our measurements showed that this
effectively increases the success rate of DNSSEC availability, increasing NXDO-
MAIN queries from a 56% to a 75% success rate and wildcard queries from 40%
to 60%.
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If the ISP recursive resolver is also unable to provide the host with valid
DNSSEC data, the next step for the host should be to query a public DNS
server that can handle DNSSEC. One well known example for this could be
the Google DNS servers, available at 8.8.8.8 and 8.8.4.4. At this step, almost
the entirety of all hosts should be able to obtain DNSSEC data, as long as the
chosen public DNS server is capable of processing DNSSEC information.

As a last resort mechanism, the stub resolver can be used as a recursive
resolver itself to gather DNSSEC information. This is an undesirable scenario,
as the data collected by this stub resolver will only be cached for itself, which
limits the scalability of the DNS infrastructure as a whole.

There is the possibility that users would desire to not use public DNS servers
for their queries, as that could provide sensitive data directly to the companies
running them. In that case, the step of using a public DNS should be skipped,
and proceed instead to do full recursive queries from the host itself.
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8 Conclusions

In this Section we discuss the conclusions gathered from our work.

From the results of our measurements, we determine that DNSSEC adoption
in recursive resolvers is still scarce. Furthermore, DNSSEC queries that involve
more complex proofs, such as authenticated denial of existence and wildcard
resolution are even more problematic. Basic DNSSEC queries were properly
answered –with correct authentication proofs– by 64% of the resolvers, whereas
denial of existence proofs and wildcard resolutions were properly handled in
only 56% and 40% of the resolvers, respectively.

To overcome these limitations, we have successfully defined a discovery
method to deliver DNSSEC information to the end users. Besides the last resort
solution of performing recursive queries from the end host, other solutions in
our discovery method are able to offer a shared cache mechanism for multiple
users, which helps maintaining the scalability of DNS.

This discovery mechanism is based on performing DNS queries through al-
ternative recursive resolvers, other than the originally defined by the system,
either by user specification or DHCP assignment. The first alternative is to
directly query the resolver from the user ISP. Initially that is also the resolver
that is being used, but the DNSSEC information is lost somewhere along the
way because of intermediate DNS forwarders not being able to handle DNSSEC
data. When skipping these intermediate forwarders, we noticed a significant
raise on the success rate of the DNSSEC queries.

The second alternative involves using a public DNS server, capable of per-
forming DNSSEC operations, to retrieve DNSSEC data. The only requirement
of this step is to use a public DNS server that is capable of processing DNSSEC
queries.

Finally, the worst-case scenario involves using the stub resolver as a recursive
resolver. Although it is possible to do that, the caching mechanisms of DNS are
lost when performing queries that way, and that makes this solution undesirable
unless there is no alternative.

Additional conclusions from our measurements are:

1. Only 26% of the DNS resolvers do actually perform validation of DNSSEC
data (which is a small valued compared to the 64% of resolvers that could
perform basic DNSSEC queries).

2. Even though usually hosts have at least two defined DNS servers, in most
configurations that only helps achieve a higher degree of redundancy and
availability, but does not help in getting proper DNSSEC answers.
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9 Future Work

As a follow up work to the results of this project, we propose two lines of
work that could extend and validate the work done:

1. First, it would be interesting to use an alternative infrastructure or
method, other than RIPE ATLAS, and compare the corresponding re-
sults to the ones gathered in this project. This would provide a better
insight on the current status of DNSSEC resolvers, and perhaps introduce
new ways of dealing with the problems stated in this document.

2. Additionally, to validate the conclusions from this project, a proof of con-
cept of the method discussed could be developed. This application could
be used to determine the accuracy of our method, and change it to achieve
better performance if necessary.
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10 Ethical considerations

As this project is strictly academical and does not use any sort of personal or
sensitive information in any way, we did not find any ethical issues during its
progress.
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A List of Response Codes (RCODE)

This Appendix summarizes the different response codes of DNS answers[10].
This Appendix does not include all the available RCODE values, only those
who are most widely used and that were relevant in our measurements.

RCODE Value Description
0 No Error
1 Format Error
2 Server Failure
3 Name Error
4 Not Implemented
5 Query Refused

Table 13: Possible RCODE values on DNS answers.

No Error (0): This is the standard RCODE answer for successful queries.

Format Error (1): The name server was unable to interpret the query.

Server Failure (2): The name server was unable to provide an answer due an internal error.

Name Error (3): This RCODE states that the domain name asked in the query does not
exist.

Not Implemented (4): The name server indicates that the requested operation is not imple-
mented.

Query Refused (5): The name server refused to process the query. This is usually a result of
attempting to query for a zone transfer, although it can also happen when
a server only accepts requests from certain users.
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B List of Resource Records (RR)

This Appendix showcases the resource records that were more relevant during
the course of our project.

RR Value RR Type Description
1 A IPv4 Address record[10]
2 NS Name Server record[10]
6 SOA Start of Authority[10]
43 DS Delegation Signer[3]
47 NSEC Next Secure Record[3]
46 RRSIG IPv4 DNSSEC Signature[3]
48 DNSKEY DNS key record[3]
50 NSEC3 NSEC version 3[9]

Table 14: Summary of resource records.

A Resource Record: A resource records are used to map hostnames into IPv4 addresses.

NS Resource Record: Name Server records are used to delegate a DNS zone to the marked
authoritative name server in the record.

SOA Resource Record: SOA resource records specify diverse parameters regarding the configura-
tion of an authoritative zone. These parameters include a contact email,
the domain name of the zone and several configuration timers.

DS Resource Record: This resource record is used to identify the DNSKEY RR of a delegated
zone.

NSEC Resource Record: NSEC is a resource record introduced with DNSSEC that is used to pro-
vide authenticated denial of service of names.

RRSIG Resource Record: RRSIG resource records include digital signatures of other resource records
present on a DNSSEC-secured zone. Each record set has a a RRSIG
resource record.

DNSKEY Resource Record: This resource record contains the key to be used on DNSSEC queries for
a specific zone.

NSEC3 Resource Record: NSEC3 is a parameter similar to NSEC that utilizes hashes instead of the
real names to prevent zone-walking attacks.
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