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Abstract—Quantum computing is expected to threaten current
cryptography, especially the algorithms used in many Internet
protocols. Quantum-resilient algorithms, colloquially referred to
as Post-Quantum Cryptography (PQC), are under active devel-
opment and standardization. Many of these new algorithms have
larger signatures or keys that exceed the size requirements im-
posed by the Domain Name System (DNS) or require increased
computational power. This means that PQC algorithms need
to be evaluated carefully for their use in the Domain Name
System Security Extensions (DNSSEC). Previous work analyzed
different PQC algorithms and found potential candidates for
use in DNSSEC. To enable the use of current PQC algorithms
with large signatures in DNSSEC, researchers devised a way to
reduce the per-message impact of such algorithms by using a
Merkle tree ladder  (MTL) to authenticate messages, and only
signing this data structure with the underlying PQC algorithm.
This way all messages use a condensed signature that can be
used alongside the Merkle tree ladder to authenticate a message.
The ladder can be distributed out-of-band or attached to any
condensed signature, turning it into a full signature.

This project analyzes the impact of using MTL mode signa-
tures in DNSSEC, by measuring the signing and verification
performance, and the key and signature sizes, and by comparing
the algorithms of the MTL mode reference implementation
based on SLH-DSA to the currently deployed digital signature
algorithm ECDSA Curve P-256 with SHA-256 and to other PQC
algorithms analyzed in other projects. We find that the MTL
mode signatures perform adequately well and provide condensed
signatures small enough to meet DNS limitations. We find the
proposed MTL mode signatures to be promising for use in
DNSSEC, but that they could benefit from modifications to the
DNS protocol, like an Extension Mechanisms for DNS (EDNS(0))
option to indicate an available ladder version, or by removing the
SOA Resource Record (RR) from denial of existence responses.

Index Terms—DNS, Post-Quantum Cryptography, Security

I. Introduction

Quantum computing is expected to threaten the security
of our current cryptosystems in the next 16 years [1], [2].
To prepare for the time that quantum computers are feasible
to build, cryptographers are already designing new cryptog9
raphy algorithms that are resilient to cryptanalysis with both
quantum computers and normal computers [3], colloquially
referred to as Post9Quantum Cryptography  (PQC). Some
of the algorithms submitted during the competition of the
National Institute of Standards and Technology  (NIST) are
already standardized or in the process of standardization [4].

The new cryptography algorithms need to replace existing
ones in e.g. Internet protocols. However, some protocols, like

the Domain Name System (DNS), have certain limitations that
impose requirements on signature and key size, and signing
and verification performance on the Post9Quantum Cryptog9
raphy (PQC) algorithms usable for the Domain Name System
Security Extensions (DNSSEC). Many of the new algorithms
do not meet these requirements [5], [6], often because of their
large signatures that do not fit into a single non9fragmented
UDP packet (the standard transport for DNS) with the recom9
mended maximum payload size of 1232 bytes [7].

To address this issue, J. Harvey et al. [8] devised a way
to reduce the impact of the current PQC signature schemes
by using Merkle tree ladders (MTLs). A technique where a
collection of binary trees store the hashes of the messages
to authenticate, and the underlying PQC signature scheme is
only used to sign a data structure, the Merkle tree ladder,
derived from this collection of binary trees. To authenticate
a message, an authentication path into the tree containing the
hash of the message is attached to the message as a condensed
signature, which can be way smaller than the signatures of the
underlying PQC algorithm. For their initial implementation
in DNSSEC, J. Harvey et al. selected the Stateless Hash9
Based Digital Signature Algorithm  (SLH9DSA) (based on
SPHINCS+ [9]), as it benefits the most from MTL mode, due
to its large signatures, and is built on well9understood and
proven cryptographic techniques, being hash9based instead of
e.g. lattice9based.

In this project we measure the impact of using SLH9
DSA in MTL mode (SLH9DSA9MTL) on DNSSEC, compare
the results to other research measuring different PQC algo9
rithms [5], and analyze its feasibility for DNSSEC.

II. Research Questions

RQ1. What is the impact of using SLH9DSA9MTL in
DNSSEC?

To answer the main research question, we define the fol9
lowing sub9questions:

RQ2. How does the MTL mode affect the signature and
key size of SLH9DSA?

RQ3. How does SLH9DSA9MTL signature and key size,
and signing and verification performance compare
to other PQC algorithms in the context of DNSSEC?

RQ4. How does SLH9DSA9MTL signature and key size,
and signing and verification performance compare
to the currently in DNSSEC deployed algorithm
ECDSA Curve P9256 with SHA9256?
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III. Related Work

M. Müller et al. [6] presented an analysis of the implica9
tions of different PQC algorithms in the context of DNSSEC.
The authors specifically considered the requirements on signa9
ture size and verification efficiency as imposed by DNSSEC,
and evaluated the (then current) PQC algorithms of the third
round of the NIST competition. They show three algorithms
that partially meet DNSSEC’s requirements and show options
to adapt DNSSEC to accommodate PQC algorithms better.

Following further progress in the NIST competition, C.
Schutijser et al. [10] developed a testbed to easily investigate
the impact of the PQC algorithms on DNSSEC in a local
environment.

Additionally, J. Goertzen et al. [11] investigated the real9
world impact of a few PQC algorithms on correct delivery
of DNS messages via UDP with the RIPE Atlas measuring
system [12] and show that most PQC algorithms would
currently have significant delivery failure rates.

Recently, O. Surý [5] conducted performance benchmarks
for a list of algorithms implemented in BIND 9 [13] and
found that some algorithms provided inadequate (signing or
verification) performance or signature or key sizes. In the
benchmarks, O. Surý justifiably omitted the algorithm SLH9
DSA.

Considering that the new PQC algorithms have rather large
signatures and that, if there were to be future algorithms
with smaller signature sizes, they would be less researched,
J. Harvey et al. [8] devised a way to reduce the impact of
the current PQC signature schemes by using Merkle tree
ladders. They published two IETF Internet9Drafts specifying
the Merkle Tree Ladder (MTL) Mode Signatures [8] and the
use of SLH9DSA9MTL in DNSSEC in Stateless Hash-Based
Signatures in Merkle Tree Ladder Mode (SLH-DSA-MTL) for
DNSSEC [14].

Related to the research are the standardization documents
FIPS 204 [15] and 205 (SLH9DSA) [16], and the participants
of the different rounds of the NIST competition [4].

This project combines and continues the work of O. Surý
and A. Fregly et al., by conducting performance benchmarks
for the SLH9DSA9MTL algorithm in DNSSEC.

IV. Background

This report assumes basic knowledge about the Domain
Name System, DNSSEC, and its underlying protocols. More
specifically, topics like the root zone, DNS messages, the
origin of the 1232 bytes UDP payload limitation [7], [17],
and others, will not be explained here.

Additionally, basic knowledge about CPU cores/threads
and hyper9threading is beneficial to fully grasp the reasoning
behind the benchmark environment setup in Section VII, but
is not required to follow the rest of the paper.

Basic knowledge about using cryptography in practice is
necessary, as concepts like signatures, signature creation, and
signature verification are not further explained. Understanding
of the inner workings of cryptography algorithms is not
required.

V. Introduction to MTL mode

This section is primarily a brief and simplified recapitu9
lation of the Merkle tree ladder mode description from
[18] and [14]. For a more in9depth explanation, please refer
to those resources. Additionally, this description uses DNS
and DNSSEC specific terms instead of general cryptography
terms.

Fig. 1. “Example of a Merkle tree ladder following a binary rung strat9
egy. Rungs [1:8], [9:12] and [13:14] collectively authenticate all 14 leaf
nodes.” [18]

In normal DNS operation, a digital signature algorithm is
used to sign each individual Resource Record set (RRset). In
MTL mode, however, RRsets are authenticated using a data
structure (the Merkle tree ladder) derived from all RRsets
in a zone, which in turn is signed with the underlying
signature scheme. Individual RRsets are then accompanied by
condensed signatures (see below).

The Merkle tree ladder is a collection of binary trees, or
rather their root nodes. In the binary rung strategy, provided
by the authors, the number of binary trees and the number
of messages they cover each is determined by the binary
representation of the number of RRsets, so, e.g. with 14
RRsets (as in Figure 1), which is 8 + 4 + 2, so 3 trees. The
14 RRsets in this example are then laid out as the leafs of
those binary trees, or rather their hash values are (see bottom
two rows in Figure 1). The internal nodes of the binary trees
are constructed from the hash values of their two children, all
the way up to the root. The root node of each binary tree is
called a rung, and the collection of rungs is called a ladder.

There are two types of signatures in MTL mode, full
signatures and condensed signatures. Full signatures consist
of the ladder, signed with the underlying signature algorithm,
and the authentication path (see below) for the RRset in
question. Condensed signatures consist of the authentication
path and some metadata to identify the ladder from which the
authentication path was formed.

An authentication path is a list of sibling node hashes on
the path from the leaf of an RRset to the rung of its binary
tree. So, e.g. for message 2 in Figure 1, the siblings would
be the leaf node of message 1, the node [3:4], and [5:8].
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By combining the sibling node hash of message 1 with the
hash of the original message 2, a verifier can reconstruct node
[1:2]. Next, the verifier can combine the nodes [1:2] and [3:4]
to get [1:4], which is then combined with [5:8] to calculate
the root node [1:8]. If this calculated root node is part of
the ladder that was distributed as part of any full signature
and stored by the verifier, and its signature is valid, then the
message is authenticated.

In the current version of the Internet9Draft about the use of
SLH9DSA in MTL mode [14] the SOA RR is always accom9
panied by a full signature while other RRs use condensed
signatures. However, every RRset could be served with a full
signature. A client can request to receive a full signature for
any query by using the EDNS(0) flag specified in the draft.

VI. Approach & Methods

To better measure the performance of SLH9DSA9MTL,
we prepare a consistent benchmark environment, assigning a
specific set of CPU cores to the benchmarking processes (see
Section  VII), to decrease the performance variance due to
interfering processes. With the benchmark environment set up,
we create a performance baseline using ECDSA Curve P9256
with SHA9256 (ECDSAP256SHA256) [19], both because it
is featured in [5] and because it is a required algorithm as
of RFC 8624 [20]. Next, we benchmark the SLH9DSA9MTL
algorithm variants implemented in [21], and compare their
performance against the ECDSAP256SHA256 baseline. We
analyze key generation, signing, and verification performance,
as well as key and signature size.

To compare our results to the results from [5], we derive
a performance ratio based on the baseline algorithm ECDSA
that has been measured by us and by O. Surý [5]. We adjust
the measurements in [5] by this ratio to be able to compare
our measurements to the measurements from [5] even though
we used different software and hardware.

VII. Environment Setup

A. Isolating CPU cores

To reserve 4 thread (2 cores) for the benchmarks, we use the
kernel command line option isolcpus=12-15 [22]. This
instructs the Linux kernel process scheduler not to schedule
any processes on the threads 12–15.
B. Running benchmarks on isolated cores

To execute processes on the isolated CPU cores, we use
taskset [23], specifying the previously reserved threads.

Even though we reserve multiple threads, the benchmarks
only use a single thread, as the ldns tools are implemented
single9threaded.
C. Benchmark and measurement tool

To execute and collect statistics during the benchmarks, we
use hyperfine version 1.19.0 [24]. This tool allows us to
execute the programs to benchmark for a set number of times,
collect each execution’s time, and calculate relevant statistics,
such as mean, median, and variance.

D. Disabling CPU boost

During initial tests, we observed a relatively stable clock
speed (of ca. 4600–4750 MHz) and no notable performance
variance with CPU boost enabled. However, the CPU tem9
perature would rise to 99  °C during the single9threaded
benchmarks, and we decided to disable CPU boosting to avoid
potential thermal throttling, in case other CPU cores were
utilized during the benchmarks.

On our machine, disabling the CPU boost can be
achieved by writing to the Linux sysfs, namely
the files /sys/devices/system/cpu/cpu{0..15}/
cpufreq/boost.

With CPU boost disabled, the clock speed during bench9
marks is very stable at 3269 MHz with a CPU temperature
around 55 °C.
E. Other system preparations

In addition to isolating CPU cores, we mount a tmpfs
to store all files created during the benchmarks in system
memory to avoid any potential performance impact by the
disk.

As the machine used for the benchmarks is a laptop with
a desktop operating system, we also disable the system’s file
indexing for the benchmark directory to avoid any unnecessary
I/O on said directory that could interfere with the results.
F. Resolver setup

To measure the message sizes with the different algorithms
as shown in [5], we set up an authoritative name server to
serve the root zone signed with the different algorithms, and a
resolver (that only queries our own name server). The software
used are modified versions of NSD [25] and Unbound [26]
extended to support the two MTL mode algorithms.
G. Preparing the root zone file

For our experiments we use the root zone [27], as it is easy
to acquire (e.g. from the root server f), very relevant, and
frequently queried. We remove all DNSSEC related records
that will be re9created by the signing process. Additionally,
we remove the record for the Message Digest for DNS Zones
[28], as it will contain a wrong digest after our modifications
to the zone and is irrelevant for our experiments. In summary,
we remove records of the types DNSKEY, NSEC, RRSIG,
and ZONEMD:

dig AXFR . @f.root-servers.net \
  > root-original.zone
grep -vE "(DNSKEY|NSEC|RRSIG|ZONEMD)" \
  root-original.zone | \
  grep -vE "(^;)|(^$)" | \
  head -n-1 > root.zone

Listing 1. Steps taken to prepare the root zone.

At the time of our experiments, the root zone’s serial
number is: 2025060900. With a total of 20821 RRs and 2787
RRsets. This is the version used throughout this research.
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VIII. The Benchmarks

For the benchmarks, we use the extended LDNS tools [21]
for key generation, and signature creation and verification.
The key size can be derived from the generated key files and
read from the algorithm standardization documents (e.g. [16]).
The signature sizes need to be extracted from the RRSIG
records of the signed zone file. Additionally, we can calculate
the maximum signature size (full and condensed) using the
formulas provided in [14, Section 11].

To create an adequate sample size for each benchmark,
we repeatedly execute the different programs used for key
generation, zone signing and zone verification, and measure
their execution time¹:

TABLE I
Benchmark runs per algorithm.

Algorithm Key
Generation

Signing Validation

ECDSAP256SHA256 10000 1000 1000

SLH9DSA9MTL9SHA29128s 10000 1000 1000

SLH9DSA9MTL9SHAKE9128s 10000 1000 1000

SLH9DSA9SHA29128s 1000 3 100

SLH9DSA9SHAKE9128s 1000 3 100

To facilitate reproducable and quick benchmarks, we de9
veloped a simple script to prepare, run, and clean up the
benchmarks, as well as logging CPU clock speeds during
the benchmarks. It executes each benchmark on the reserved
threads using the following command where $cmd is replaced
by the LDNS invocation for each benchmark:

taskset --cpu-list 12-15 \
    hyperfine \
        --export-json="$json" \
        --shell=none \
        --warmup "$warmup" \
        --runs "$runs" \
        -- \
        "$cmd"

Listing 2. Command to run a benchmark on specific CPU threads.

A. Key generation

For key generation, we use ldns-keygen -a <alg> .
for each algorithm.
B. Zone signing

For zone signing, we use ldns-signzone -f
<output-file> root.zone <zsk> <ksk> with two
keys (one ZSK and one KSK) for each algorithm.

We use one KSK and one ZSK for signing the zone, to be
in line with [5] and operator procedures. However, this does
not influence the benchmarks significantly, compared to only
using a single key, as the additional key is only used to sign

¹Initially, we planned to run the non9MTL mode SLH9DSA variants
as often as the other algorithms, but found that they are too expensive
and reduced the number of runs.

a single RRset, which amounts to 0.036% of the signatures
created for the root zone (and an even smaller share for larger
zones).
C. Zone verification

For zone verification, we use ldns-verify-zone -k
<ksk-file> <signed-zone> for each algorithm, where
the zone is signed using one ZSK and one KSK as above for
the zone signing benchmark.
D. Calculating the maximum signature size

A. Fregly et al. [14] provide formulas to calculate the
maximum signature size per number of RRsets in a zone with
input parameters:

• 𝑛 = Security parameter for the underlying signature
scheme

• USS = Size of underlying signature
• 𝑁  = Number of messages in message series
In our case with the algorithms SLH9DSA9SHA29128s and

SLH9DSA9SHAKE9128s the values for 𝑛 and USS are 𝑛 =
16 and USS = 7856.

To calculate the maximum condensed signature size, the
formula is:

𝐶 = 𝑛 + 24 + (𝑛 ∗ floor(log2(𝑁))) (1)
To calculate the maximum size for a signed ladder, we use:

𝐿 = 16 + ((8 + 𝑛) ∗ ceiling(log2(𝑁))) + USS (2)
Finally, the maximum size for full signatures can be calcu9

lated using:
𝐹 = 𝐶 + 𝐿 (3)

IX. Results

In this section we present the results of the signing and
verification performance benchmarks, the key and signature
size benchmarks, the maximum signature size calculation, and
the measurements from [5] adjusted by the resulting perfor9
mance ratios.
A. Signing performance

MTL mode signatures reduce the signing time of the under9
lying signature scheme SLH9DSA by a factor of 666.30 for
SHA2 and 894.0 for SHAKE down to 598.52 ms and 902.96
ms respectively. This is 1.67 and 2.52 times the time required
for ECDSAP256SHA256, but still within one second.

TABLE II
Signing time in milliseconds.

Algorithm Mean σ

ECDSAP256SHA256 358.17 8.64

SLH9DSA9MTL9SHA29128s 598.52 10.03

SLH9DSA9MTL9SHAKE9128s 902.96 5.79

SLH9DSA9SHA29128s 398 793.40 776.08

SLH9DSA9SHAKE9128s 807 239.86 762.97
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B. Verification performance

MTL mode signatures also reduce the verification time of
the underlying signature scheme SLH9DSA by a factor of
4.96 for SHA2 and 5.79 for SHAKE down to 598.06 ms and
600.89 ms respectively. This is, in both cases, approximately
1.09 times the time required for ECDSAP256SHA256, but
also within one second.

TABLE III
Verification time in milliseconds.

Algorithm Mean σ

ECDSAP256SHA256 550.19 4.52

SLH9DSA9MTL9SHA29128s 598.06 8.40

SLH9DSA9MTL9SHAKE9128s 600.89 7.63

SLH9DSA9SHA29128s 2968.52 54.94

SLH9DSA9SHAKE9128s 3476.51 22.02

C. Key generation performance and size

While the key generation for the different SLH9DSA vari9
ants takes over 7 or even 14 times the amount of time as for
ECDSAP256SHA256, keys generate humanly imperceptibly
fast for all algorithms:

TABLE IV
Key generation time in milliseconds.

Algorithm Mean σ

ECDSAP256SHA256 2.96 0.18

SLH9DSA9MTL9SHA29128s 22.37 0.79

SLH9DSA9MTL9SHAKE9128s 41.83 1.03

SLH9DSA9SHA29128s 22.20 0.61

SLH9DSA9SHAKE9128s 41.85 0.68

The public keys of the SLH9DSA variants are all 32 bytes
in size, which is also documented in [14, Section 3] and [16,
Table 2]. This is half the size of ECDSAP256SHA256 public
keys. Private keys of the SLH9DSA variants, on the other
hand, increase in size compared to ECDSAP256SHA256 (see
Table V), with the MTL mode variants storing additional data
related to MTL mode.

TABLE V
Size of the algorithms’ private and public key in bytes.

Algorithm Public Key Private Key

ECDSAP256SHA256 64 32

SLH9DSA9MTL9SHA29128s 32 211

SLH9DSA9MTL9SHAKE9128s 32 211

SLH9DSA9SHA29128s 32 104

SLH9DSA9SHAKE9128s 32 104

D. Signature size

In MTL mode, the signature size of an RRset depends on
the size of the zone, specifically the number of RRsets to sign
(see Section VIII.D), the size of the binary tree that covers

the RRsets (see Section V), and whether it is a condensed or
full signature.

In case of the root zone with 2787 RRsets, the signature
sizes are distributed as follows:
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Fig. 2. Distribution of MTL mode signature sizes in the root zone.

E. Maximum signature sizes

Using the formulas mentioned earlier, we calculate the
maximum signature sizes for zones sized up to 10 000 000
RRsets. As the growth is logarithmic, a variation of Figure 3
using a logarithmic scale for the x9axis can be found in
Appendix B.
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Fig. 3. Maximum signature size per number of RRsets to sign.

The root zone with 2787 RRsets has a maximum full
signature size of 8376 bytes and a maximum condensed
signature of 216 bytes. The .nl ccTLD with approximately
12 000 000 RRsets [29] has a maximum full signature size
of 8856 bytes and a maximum condensed signature of 408
bytes, while the .ch ccTLD with 3 836 941 RRsets [30] has
a maximum full signature size of 8776 bytes and a maximum
condensed signature of 376 bytes.
F. DNS message sizes

As in [5], Table VI shows different DNS message sizes as
reported by dig, where the Delegation column also applies
to data responses that are similar in size as NS responses.
Responses that fit within the 1232 bytes limit are marked
in green.

Although NSEC RRs are accompanied by a condensed
signature, NXDOMAIN and NODATA responses also contain
the SOA RR that always carries a full signature.
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TABLE VI
DNS message sizes (in bytes) when querying the root zone with 1 KSK and 1 ZSK.

(Messages smaller than or equal to 1232 bytes marked in green)

Algorithm SOA DNSKEY NXDOMAIN NODATA Delegation

ECDSAP256SHA256 197 280 319 316 333

SLH9DSA9MTL9SHA29128s 8366 8089 8641 8638 486

SLH9DSA9MTL9SHAKE9128s 8366 8089 8641 8638 486

SLH9DSA9SHA29128s† 7989 8072 15903 15900 8125

SLH9DSA9SHAKE9128s† 7989 8072 15903 15900 8125

† Estimated message sizes, calculated by hand.
Queries: . IN {NS,SOA,DNSKEY} — (NODATA:) . IN A — (NXDOMAIN:) aa. IN A

G. Relative performance comparison

To derive the performance ratio, we divide our measured
results by the results from [5]. This process is repeated for
each metric (mean, variance, and file size, but not public/
private key and signature size) of all performance benchmarks.
The Tables VII, VIII, and IX show our previously demon9
strated results alongside the results from [5] adjusted by
the appropriate ratios. A list of all ratios can be found in
Appendix C.

Table VII shows that from the PQC algorithms only the
HAWK variants complete faster than the MTL mode algo9
rithms in signing the root zone.

TABLE VII
Signing time in milliseconds, and file size in bytes.

Including [5] adjusted by performance ratio (lower part).

Algorithm Mean σ File Size

ECDSAP256SHA256 358.17 8.64 1 476 949

SLH9DSA9MTL9SHA29128s 598.52 10.03 2 023 946

SLH9DSA9MTL9SHAKE9128s 902.96 5.79 2 023 944

SLH9DSA9SHA29128s 398 793.40 776.08 30 431 006

SLH9DSA9SHAKE9128s 807 239.86 762.97 30 431 006

FALCON9512 8017.19 22.7 3 526 586

HAWK9256 321.06 4.15 2 107 138

HAWK9512 428.62 8.13 3 149 347

SQIsign 89547.59 57.52 1 762 664

MAYO 1784.45 41.25 2 806 778

ANTRAG9512 8768.84 94.19 3 274 573

RSA 2048 1388.83 2.54 2 130 484

ECDSAP256 358.17 8.64 1 476 949

ED25519 395.12 5.34 1 476 871

While Table VIII shows that most other PQC algorithms
verify the signed root zone slightly faster than the MTL mode
algorithms, most complete in under one second. Only the non9
MTL mode algorithms and SQIsign require more than two
seconds to complete.

Key generation, as shown in Table IX, completes within a
few milliseconds in all cases, although the SLH9DSA variants
take significantly longer than all other algorithms.

TABLE VIII
Verification time in milliseconds.

Including [5] adjusted by performance ratio (lower part).

Algorithm Mean σ

ECDSAP256SHA256 550.19 4.52

SLH9DSA9MTL9SHA29128s 598.06 8.40

SLH9DSA9MTL9SHAKE9128s 600.89 7.63

SLH9DSA9SHA29128s 2968.52 54.94

SLH9DSA9SHAKE9128s 3476.51 22.02

FALCON9512 364.12 1.1

HAWK9256 209.7 1.41

HAWK9512 324.16 66.29

SQIsign 20148.23 35.16

MAYO 898.16 26.92

ANTRAG9512 494.81 1.41

RSA 2048 225.67 18.98

ECDSAP256 550.19 4.52

ED25519 739.06 4.52

TABLE IX
Key generation time in milliseconds.

Including [5] adjusted by performance ratio (lower part).

Algorithm Mean σ

ECDSAP256SHA256 2.96 0.18

SLH9DSA9MTL9SHA29128s 22.37 0.79

SLH9DSA9MTL9SHAKE9128s 41.83 1.03

SLH9DSA9SHA29128s 22.20 0.61

SLH9DSA9SHAKE9128s 41.85 0.68

FALCON9512 5.26 0.92

HAWK9256 3.08 0.09

HAWK9512 3.38 0.27

SQIsign 6.42 0.34

MAYO 2.96 0.23

ANTRAG9512 4.72 0.2

RSA 2048 32.4 19.86

ECDSAP256 2.96 0.18

ED25519 2.97 0.18

As for the key and signature sizes, Table X shows that most
algorithms’ public keys and signatures individually are smaller
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than 1232 bytes, but when added together exceed 1232 bytes,
which causes fragmentation in most networks.

TABLE X
Size of private/public keys and signatures in bytes.

Including original results from [5] (lower part).

Algorithm Public
Key

Private
Key

Signature

ECDSAP256SHA256 64 32 64

SLH9DSA9MTL9SHA29128s 32 211 †

SLH9DSA9MTL9SHAKE9128s 32 211 †

SLH9DSA9SHA29128s 32 104 7856

SLH9DSA9SHAKE9128s 32 104 7856

FALCON9512 897 1281 666

HAWK9256 450 96 249

HAWK9512 1024 184 555

SQIsign 65 353 148

MAYO 1420 24 454

ANTRAG9512 768 59392 592

RSA92048 256 1232 256

ECDSAP256 64 32 64

ED25519 32 32 64

† See Figure 3

X. Discussion

In this project we measured the performance and size of
two MTL mode algorithms as provided by the authors of MTL
mode signatures. We verified that using MTL mode offers
significant benefits in DNSSEC as outlined by the authors,
reducing the signature size for all messages that do not carry
the signed ladder—in the case of DNS that is data responses
that are not SOA or DNSKEY. However, as the SOA RR
is always part of NXDOMAIN and NODATA responses, the
benefit does not apply to those responses in the current form
of MTL mode signatures.

Answering research question RQ2, we verified that using
MTL mode signatures greatly reduces the per9message impact
of PQC algorithms with large signatures like SLH9DSA by
introducing condensed signatures, while leaving the public
key size unaffected.

Compared to the current DNSSEC algorithm
ECDSAP256SHA256 (RQ4), we found that the MTL mode
algorithms perform adequate. While increasing signature
sizes significantly in all cases, the condensed signatures for
responses that do not include SOA or DNSKEY RRs fit into
the 1232 bytes limitation. While the public key of SLH9DSA
(and by extension the MTL mode variants) is smaller than for
ECDSA, its decrease in size is insignificant in the context of
DNS, which can easily fit such low data volumes. Regarding
the performance, the signing time almost doubles or triples,
and the verification time increases by about 50 ms compared
to ECDSA. Even though the performance decreases greatly
for signing, it is still within reasonable limits and should not
affect normal operations significantly.

Comparing to other PQC algorithms (RQ3), we found that
the MTL mode algorithms perform competitive to almost all
alternatives tested by O. Surý. The only algorithms faster than
the MTL mode of SLH9DSA are HAWK9256 and HAWK9512
with 36–72% the time used for signing. Other algorithms
require ca. 3–150 times the amount of time. However, as the
performance comparison of MTL mode signatures with other
PQC algorithms is based on measurements that have been
adjusted by the ratio between a baseline algorithm (ECDSA)
measured in this and O. Surý’s research, which used different
hardware and software, the accuracy of the comparison is
impaired. It should still allow for an indication of the expected
magnitudes of performance differences.

With regard to signature sizes, MTL mode signatures
increase significantly for SOA and DNSKEY responses, while
data responses benefit from the smaller condensed signatures.
The public key of SLH9DSA is significantly smaller than most
of the other algorithms tested by O. Surý, but this benefit
is nullified by the huge DNSKEY signature. So, while MTL
mode is beneficial in data responses, it negatively impacts
NODATA/NXDOMAIN responses, as well as the SOA and
DNSKEY RRs.

Finally, answering the main research question RQ1, the
small MTL mode signatures are beneficial for most data
responses, all with close performance to current signature al9
gorithms. However, SOA and DNSKEY queries would always
require transmission via TCP due to their large signatures.
This also applies to NXDOMAIN and NODATA responses,
as they include the SOA record. Reducing the impact on NX9
DOMAIN and NODATA responses would require a change
of the DNS protocol, e.g. by removing the SOA RR from
such responses when DNSSEC is enabled, as the NSEC RR
already demonstrates non9existence.

XI. Conclusion

In this research we found that using MTL mode signatures
in DNSSEC would have a beneficial impact on the signature
size of most data responses, reducing their size compared
to most PQC algorithms, albeit slightly increasing their size
compared to current signature algorithms, while providing
adequate signing and verification performance. However, in
their current form, MTL mode signatures do not reduce the
negative impact of PQC algorithms with long signatures on
DNSKEY or SOA RRsets. This means that NODATA and
NXDOMAIN responses, as they contain the SOA RR, retain
the long signatures of a chosen PQC algorithm. Changes to
the DNS protocol could enable the benefits of MTL mode
signatures for NODATA and NXDOMAIN responses (see
Section XII).

While the chosen methodology for comparison with other
PQC algorithms limits the accuracy of the comparison results
presented earlier, the general comparison can still inform
about the magnitude of performance differences between said
algorithms and MTL mode signatures.

Going forward, improvements to the Domain Name System
and the Internet9Draft on MTL mode signatures in DNSSEC
should be investigated as outlined in Section XII.
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XII. Future Work

During this project we discovered a few opportunities to
improve the usage of MTL mode signatures in DNSSEC, as
well as some avenues for further research.
A. EDNS(0) option: stored ladder version

One option to reduce the impact of MTL mode signatures
on SOA and DNSKEY queries would be to investigate an
EDNS(0) option to indicate to the authoritative name server
which ladder is currently available to/stored by the client.
This way the name server could send a condensed signature
for all SOA (and DNSKEY) queries, if the ladder stored by
the resolver is up9to9date. Additionally, the authoritative could
keep track of old ladders and check whether the response in
question is covered by the old ladder. If the resolver’s ladder
does not authenticate the current SOA record, the authoritative
name server can send a truncation response and deliver the full
signature when queried by the resolver via TCP. The interplay
between this option and the option to actively request a full
signature from the current Internet9Draft version would need
to be investigated.
B. SOA in DNSSEC enabled non-existence proofs

To reduce the impact on denial of existence proofs, there are
two options. One, always send a condensed signature for SOA
records that are part of NSEC proofs, or when the EDNS(0)
option from the previous section is used. Two, remove the
SOA record from NODATA and NXDOMAIN responses
when DNSSEC is enabled and NSEC/NSEC3 records would
be returned. DNSSEC unaware resolvers would not set the
DNSSEC OK flag, which would signal to the authoritative to
use the SOA record for denial of existence responses.
C. Impact on dynamic zones

Signing new RRsets requires extending or replacing the
Merkle tree ladder. In the current version of the draft with
the binary rung strategy, frequent zone changes would require
frequent transmissions of fresh ladders. Future projects could
measure the impact on traffic and frequency of outdated
ladders for dynamic zones.

Alternatively, as mentioned previously (in Section XII.A),
multiple ladder versions could be kept around and re9used if
applicable to the queries. And new trees could be added to the
ladder for some time instead of replacing the smaller trees.
D. Repeat benchmarks of all algorithms

For a more accurate comparison, the benchmarks of all or
an updated selection of PQC algorithms could be repeated.
This could then help reinforce a future decision for selecting
one or more PQC algorithms for use in DNSSEC.
E. Measure performance of fast variants of SLH-DSA-
XXX-128

Even though the faster 128bit variants of SLH9DSA SLH9
DSA9SHA29128f and SLH9DSA9SHAKE9128f have even
larger signatures (about 17 kB) they could still be a viable
alternative, if their performance is significantly greater than

the short 128s variants, as the full signatures require TCP
even with the short variant.
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Appendix A
List of Abbreviations

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

ECDSA Elliptic Curve Digital Signature Algorithm

ECDSAP256SHA256 ECDSA Curve P9256 with SHA9256

EDNS(0) Extension Mechanisms for DNS

KSK Key Signing Key

MTL Merkle tree ladder

NIST National Institute of Standards and Technology

PQC Post9Quantum Cryptography

RR Resource Record

RRset Resource Record set

SLH9DSA Stateless Hash9Based Digital Signature Algo9
rithm

SLH9DSA9MTL Stateless Hash9Based Digital Signature Algo9
rithm in Merkle Tree Ladder mode

TCP Transmission Control Protocol

UDP User Datagram Protocol

ZSK Zone Signing Key

ccTLD country code top9level domain

Appendix B
Maximum signature sizes plot
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Fig. 4. Maximum signature size per number of RRsets to sign.

Appendix C
Collection of performance ratios

The following table lists the performance ratios based on
the ECDSAP256SHA256 results from this research and from
[5] for each metric:

TABLE XI
Performance ratios rounded to five decimals.

Metric Ratio

Signing time 1.64223

Signing time variance 0.84706

Signed file size 1.21955

Verification time 0.90195

Verification time variance 1.00444

Key generation time 0.06563

Key generation time variance 0.07826
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