How to get a trustworthy DNS Privacy enabling recursive resolver

an analysis of authentication mechanisms for DNS Privacy enabling recursive resolvers

Willem Toorop
NLnet Labs
(presenter)

Melinda Shore
Fastly

Benno Overeinder
NLnet Labs
DNS over TLS
What are the actors, and what are their relationships?

- Current Spec (RFC7858) focuses on securing stub to recursive traffic
- TLS from the system stub client to a privacy enabling recursive resolver can withstand the power and capabilities of a passive pervasive monitor (i.e. an eavesdropper)
- The user entrusts her queries with the *Privacy enabling recursive resolver*
- How did the stub resolver learn the recursive resolver? (traditionally via **DHCP**)

![Diagram showing relationships between actors such as stub resolver, privacy enabling recursive resolver, and authoritative servers connected through a local network (DHCP) and wifi]
DNS over TLS
What are the actors, and what are their relationships?

- Current Spec (RFC7858) focuses on securing stub to recursive traffic
- User trusts the channel (Verbally? Website?) over which the connection end-point (IP-address? Name?) was communicated (what is most reliable to get right, name or IP?)
- How to get the IP-address for a name securely, and privately (what is acceptable to leak?)
- Trust the DNSSEC root trust-anchor + provisioning channel + TLD of the name?
Authentication

- TLS from stub to resolver cannot withstand the power and capabilities of an eavesdropper, it does not withstand an attacker that plugs itself into the path.

- Trust in the network can be replaced with authentication.
- In RFC7858 and draft-ietf-dtls-and-tls-profiles authenticated TLS is called **Strict**.
- **Oppertunistic** is the best you can get modus operandi.
Analysis of authentication mechanisms

- **Analyzed mechanisms:** *(from draft-ietf-dprive-dtls-and-tls-profiles)*
 - SubjectPublicKeyInfo pinning ...
 - Traditional Public Key Infrastructure for X.509 Certificates
 - Statically configured Authentication Domain Name and IP address ...
 - Statically configured Authentication Domain Name + dynamically obtained IP ...
 - DNS Based Authentication of Named Entities ...
 - TLS DNSSEC Authentication Chain Extension

- There are key trade-offs between
 - Usability & provision flexibility *(important for adoption and correct usage)*
 - meta queries leaking information in these mechanisms
 - Requirements on additional dependencies *(fewer deps, less can break; i.e. Robustness)*
 - Availability of unhampered DNSSEC and DNSSEC capable stub resolver
 - Third parties (Trust anchor/CA store) that do the authentication
Analysis of authentication mechanisms

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKIX ADN + IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKIX ADN only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain Extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **We did an analysis on the basis of these considerations:**
 1) Ease of configuration … Least possible config to identify the trusted recursive resolver
 2) Key management … Can it handle updated, rolled or withdrawn keys
 3) Information leakage … Leaks info about the *trusted* recursive resolver, via DNS or SNI
 4) DNSSEC dependency … Needs DNSSEC availability and capability for bootstrapping
 5) Trust requirements … Dependencies and maintainability on Trust Anchor and/or CA store
SubjectPublicKeyInfo (SPKI) pinning

SPKI pinset: 62lKu9HsDVbyiPenApnc4sfmSYTHOVfGgL3pyB+cBL4=

SPKI pinset: 62lKu9HsDVbyiPenApnc4sfmSYTHOVfGgL3pyB+cBL4=

+ direct and simple
+ nothing is leaked
+ no additional network activity
SubjectPublicKeyInfo (SPKI) pinning

SPKI pinset: 62lKu9HsDVbyiPenApnc4sfmSYTHOVfGgL3pyB+cBL4=

<table>
<thead>
<tr>
<th>+</th>
<th>direct and simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>nothing is leaked</td>
</tr>
<tr>
<td>+</td>
<td>no additional network activity</td>
</tr>
</tbody>
</table>

- IP-address and pinset are easy to get wrong
- Lacks provisioning
- Lacks compromised and updated keys signaling

Tip! Backup pinsets
Traditional Public Key Infrastructure for X.509 Certificates (PKIX)

? name
? IP address
- static, DHCP or DNS

+ traditional, well-known
 OS managed
+ keys can be rolled

- All CA's in the store can vouch for any name

(name: dns.cmrg.net)
Traditional Public Key Infrastructure for X.509 Certificates (PKIX)

- name
- IP address
 - static, DHCP or DNS

- All CA's in the store can vouch for any name
- no signaling of unknown CA (reason for opportunistic encryption with SMTPS)
- network access + DNS is already needed for OCSP etc.
PKIX - statically configured IP address

- IP easy to get wrong
- no IP change signalling
PKIX – Both name and IP address came from DHCP

+ Dynamically configured Authentication Domain Name

- Needs secure DHCP (does not exist) + extension to convey the ADN
- Shifts problem to bootstrapping secure DHCP

(name: dns.cmrg.net
ip: 199.58.81.218

SNI: dns.cmrg.net
OCSP etc.)
PKIX – statically configured name, IP address from DNS

Lookup the privacy resolver with DNS `_domain-s._tcp.dns.cmrg.net` SRV

```
199.58.81.218
```

Draft-ietf-dprive-dtls-and-tls-profiles requires DNSSEC for lookup

- Needs unhampered DNSSEC
- Additional trust in DNSSEC trust anchor
- DNSSEC capable stub resolver needed
 + In protocol trust anchor rollover (RFC5011)
DNS Based Authentication of Named Entities (DANE)

- Needs unhampered DNSSEC
- Additional trust in DNSSEC trust anchor

+ IP change provisioning
+ No more dependency on CA infrastructure

- DNSSEC capable stub resolver needed
+ In protocol trust anchor rollover (RFC5011)

Lookup the privacy resolver with DNS
_domain-s._tcp.dns.cmrg.net SRV
_853._tcp.dns.cmrg.net TLSA

Not concerning the option with provided IP, because that has no additional benefits
TLS DNSSEC Authentication Chain Extension

draft-ietf-tls-dnssec-chain-extension

+ Smallest setup latency (same as SPKI)
- No IP change provisioning
+ No more dependency on CA infrastructure
+ No need for unhampered DNSSEC
- Additional trust in DNSSEC trust anchor
+ DNSSEC capable stub resolver needed
+ In protocol trust anchor rollover (RFC5011)

name: dnsovertls.sinodun.com

Not concerning the option with resolved IP, because that has no additional benefits compared to the pure DANE option
<table>
<thead>
<tr>
<th></th>
<th>Ease of configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKI</td>
<td>--</td>
</tr>
<tr>
<td>PKIX ADN + IP</td>
<td>-</td>
</tr>
<tr>
<td>PKIX ADN only</td>
<td>++</td>
</tr>
<tr>
<td>DANE</td>
<td>++</td>
</tr>
<tr>
<td>Chain extension</td>
<td>-</td>
</tr>
</tbody>
</table>

+++ PKIX ADN only, DANE
need only the name

- PKIX ADN + IP, Chain extension
need name + IP

IPv6 addresses are hard to communicate

-- SPKI
needs IP + pinset

Base64 pinset is impossible to communicate
Comparison of the different considerations per mechanism

<table>
<thead>
<tr>
<th></th>
<th>Ease of configuration</th>
<th>Key management</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKI</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PKIX ADN + IP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PKIX ADN only</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>DANE</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Chain extension</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

+) DANE, Chain extension

DNSSEC has single trust anchor in protocol key management (RFC5011) bootstrap problem when of for long period?

-) PKIX ADN’s

Traditional, well known, managed by OS, but weakest link problem lack of unknown CA signaling

--) SPKI

Complete manual provisioning with long Base64 string
Comparison of the different considerations per mechanism

<table>
<thead>
<tr>
<th></th>
<th>Ease of configuration</th>
<th>Key management</th>
<th>Information leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKI</td>
<td>--</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>PKIX ADN + IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PKIX ADN only</td>
<td>++</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>DANE</td>
<td>++</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Chain extension</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

++) SPKI
No non-TLS communications, no SNI

+) Chain extension
No non-TLS communications, leaks name by SNI

-) PKIX ADN + IP
No non-TLS communications, leaks name by SNI, leaks CRL checking

--) PKIX ADN only, DANE
DNS communication before TLS setup, leaks SNI, PKIX also leaks CRL
Comparison of the different considerations per mechanism

<table>
<thead>
<tr>
<th></th>
<th>Ease of configuration</th>
<th>Key management</th>
<th>Information leakage</th>
<th>DNSSEC dependency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKI</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>PKIX ADN + IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>PKIX ADN only</td>
<td>++</td>
<td>-</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DANE</td>
<td>++</td>
<td>+</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chain extension</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

++
SPKI, PKIX ADN + IP
No DNSSEC dependency

+
Chain extension
Not affected by DNSSEC hampering middle boxes
Requires DNSSEC capable stub resolver

--
PKIX ADN only, DANE
Requires unhampered DNSSEC availability
Requires DNSSEC capable stub resolver
Comparison of the different considerations per mechanism

<table>
<thead>
<tr>
<th></th>
<th>Ease of configuration</th>
<th>Key management</th>
<th>Information leakage</th>
<th>DNSSEC dependency</th>
<th>Trust requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKI</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>PKIX ADN + IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>PKIX ADN only</td>
<td>++</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DANE</td>
<td>++</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Chain extension</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

++) SPKI

- trust the outbound communication channel
- connection endpoint details

+) DANE, Chain extension

- Additional trust on DNSSEC trust anchor + TLD

-) PKIX ADN + IP

- Additional trust on all CA's in the trust store

--) PKIX ADN only

- Additional trust on DNSSEC trust anchor + TLD
- Additional trust on all CA's in the trust store
Comparison of the different considerations per mechanism

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Ease of configuration</th>
<th>Key management</th>
<th>Information leakage</th>
<th>DNSSEC dependency</th>
<th>Trust requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKI</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>PKIX ADN + IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>--</td>
</tr>
<tr>
<td>PKIX ADN only</td>
<td>++</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DANE</td>
<td>++</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Chain extension</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

How would you weigh the considerations?