DNS is a simple game?

Musing about a protocol

Jaap Akkerhuis
In the beginning

- HOSTS.TXT (RFC 952)
- Maintained by SRI (Stanford)
 - Later by ISI
- A look up table
- Didn’t scale well

EXAMPLE OF HOST TABLE FORMAT

NET: 10.0.0.0: ARPANET:
NET: 128.10.0.0: PURDUE-CS-NET:
GATEWAY: 10.0.0.77, 18.10.0.4: MIT-GW.ARPA, MIT-GATEWAY: PDP-11:
MOS: IP/GW, EGP:
HOST: 26.0.0.73, 10.0.0.51: SRI-NIC.ARPA, SRI-NIC, NIC: DEC-2060:
TOPS20: TCP/TELNET, TCP/SMTP, TCP/TIME, TCP/FTP, TCP/ECHO, ICMP:
HOST: 10.2.0.11: SU-TAC.ARPA, SU-TAC: C/30: TAC: TCP:
Three Pillars make the Internet

• Naming — how we call things
 – Domain names
• Numbers — how address things uniquely
 – IP Number assignment (IANA, RIR’s)
• Routing — how to get to the address
 – Autonomous systems and BGP
Domain Name Service

- Hierarchical name space
- Notion of delegation
- Best effort
 - a-synchronous updates
 - a loosely coherent database
- Still: lookup of information
 - not a search engine!
- RFC 103[345]
DNS name space
Delegated Authority

- Fully Qualified Domain Name

jaap.do.nlnetlabs.nl

Digital Ocean NLnet Labs SIDN PTI/IANA

authorities
jaap.do.nlnetlabs.nl. ???

- Ask the root-servers, refer to
- nl. name servers, refer to
- nlnetlab.nl. name servers, refer to
- digital.ocean.com. servers answers
 with IP-address (A record) 167.172.34.102
Name Server Types

• **Stub resolver, talks to**

• **Recursive resolver**
 – can caching answers
 – can talks to other resolvers
 • actually iterative
 – can follow referrals

• **Authoritative server**
 – gives the final answer
Not just IP addresses

- **MX**: mail address
- **CNAME**: alias to other name
- **SOA**: Start of authority
- **AAAA**: IPv6 address
- **NS**: name servers

- location, mothers name etc....
Scales well

- Started with thousands of names
- Now billions of names
- Thanks to lots of caching
- Loosely coherent system
What goes wrong?

- Sloppy implementations
- Desire to always try to give an answer
- Sloppy configuration
 - 90% of name servers are wrong, DNS works by accident
- Easy for monkey in the middle attacks (MITM)
 - data is public
- It is a cost center
Implementation

- Install and forget
- Often done on the cheap
 - old hardware
 - junior sysadmin is made responsible
- Importance often overlooked
Naming Complications

• Private name spaces
 – Company Intranet
 – NAT boxes
 – “split horizons”
 – leaking information

• Name collisions
 – fritz, corp, home,
 – corp.com
 – Certificates for non-FQDN’s
Security extensions

• Authenticates the answer
 – Note, the authority might still be lying
 – Allow for auditing
 – Substrate for other security methods
 • DANE etc.

• Changes paradigm
 – needs maintenance
 – make the systems brittle
 • punishes badly configured DNS servers

• Data is still public
Games with DNS

• Make answer dependent on question
 – CDN can route to topological closest data
 • best effort
 – Defer some kinds of DOS attacks
• Rewrite (negative) answers to insert adds etc.
 – DNSSEC can prevent that
• Forwarding
 – Central caching, avoiding ISP etc.
Privacy extensions

• **Data is public**
 - easy to listen to
 - post Snowdon people started to worry about “Meta Data”

• **Hop by hop**
 - DNS cookies

• **End to end**
 - VPN style
DOT: DNS over TLS

- TLS protection
- Per system same namespace
- Known port, easy to block
DOH: DNS Over HTTPS

- Bypasses the local stub resolver
 - application picks the resolver
 - trust that that resolver doesn’t lie
 - impossible to scan
 - malware?
 - possible to control the name space for that application
 - difficult for “parent controls”
 - my net, my rules
 - “Balkanisation” of the net for different apps
 - IETF Working Group: ADD
Who controls the root?

- **ICANN**: International Corporations for Assignment of Names and Numbers
 - Protocol parameters, mostly via IETF
 - Internet Engineering Task Force
 - IP numbers, policies by ASO, but really NRO
 - Address Support Organization
 - Number Resource Organisations (RIRs)
 - Names via SO’s (GNSO, CNSO) and AC’s
 - Generic Name SO, Country Name SO
 - Government Advisory Committee
IANA — PTI

- Registry for Protocol Parameters
- Registry for IP numbers
- Root Registry allocates TLDs
 - legacy (com, org, net, edu …)
 - country codes (nl, us, ss …)
 - sponsored (aero, jobs, gov …)
 - generic (club, xyz, politie, study …)
 - brand domains (sony, canon …)
Root Zone Maintenance

- IANA/PTI decides (confirmed by ICANN)
- Verisign for technical checks and database operator
- 12 Root Zone operators, see root-servers.org
 - 9 root zone operators in Amsterdam
 - Zone current refreshed twice daily
 - More than 1000 instances
 - by means of anycasting
Wat can you do?

• Fix your DNS, add DNSSEC
 – Check with internet.nl for advice
• Help with open standards
 – ietf.org
• Become a politician
 – ICANN
 – IGF