XFR-over-TLS (XoT)

Making Zone Transfers Private

Allison Mankin amankin@gmail.com
Willem Toorop willem@nlnetlabs.nl
Sara Dickinson sara@sinodun.com
Pallavi Aras paras@salesforce.com
Han Zhang hzhang@salesforce.com
Use cases for XoT

- **Confidentiality**: Encrypting zone transfers will **defeat zone content leakage** that can occur via passive surveillance.

- **Authentication**: Use of single or mutual TLS authentication (in combination with ACLs) can complement and potentially be an alternative to TSIG.

- **Performance**: Current usage of TCP for IXFR is sub-optimal in many cases e.g. TCP connections are frequently closed after a single IXFR for a single zone.

- **SOLUTION**: Encryption of IXFR & AXFR using DNS-over-TLS [RFC7858]
 - Internet-Draft: draft-hzpa-dprive-xfr-over-tls
IXFR : Existing mechanisms vs IXoT

Existing IXFR

- NOTIFY
- NOTIFY Response
- SOA Request
- SOA Response
- IXFR Request
- IXFR Response (Zone Data)
- IXFR Request
- IXFR Response (Zone Data)

Retry over TCP if required.

XOT-Based IXFR

- NOTIFY
- NOTIFY Response
- SOA Request
- SOA Response
- IXFR Request 1
- IXFR Response 1 (Zone Data)
- IXFR Request 2
- IXFR Response 2 (Zone Data)

UDP or TCP

UDP or TCP

UDP (or part of TLS session)

TLS session
IXFR: Existing mechanisms vs IXoT

Existing

- NOTIFY
- NOTIFY Response
- SOA Request
- SOA Response
- IXFR Request
- IXFR Response (Zone Data)
- IXFR Request
- IXFR Response (Zone Data)

Primary

- UDP
- UDP or TCP
- Retrying over TCP if required.

XOT-Based IXFR

- NOTIFY
- NOTIFY Response
- SOA Request
- SOA Response
- IXFR Request
- IXFR Response 1 (Zone Data)
- IXFR Request 2
- IXFR Response 2 (Zone Data)
- UDP
- UDP (or part of TLS session)
- TLS session

High rates possible
IXFR: Existing mechanisms vs IXoT

Existing

- NOTIFY
- NOTIFY Response
- SOA Request
- SOA Response
- IXFR Request
- IXFR Response (Zone Data)
- Retry over TCP if required.

XOT-Based IXFR

- NOTIFY
- NOTIFY Response
- SOA Request
- SOA Response
- IXFR Request 1
- IXFR Response 1 (Zone Data)
- IXFR Request 2
- IXFR Response 2 (Zone Data)
- TLS session
- UDP (or part of TLS session)
XoT - Authentication mechanisms

<table>
<thead>
<tr>
<th>Method</th>
<th>Secondary</th>
<th>Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Auth</td>
<td>Channel Conf</td>
</tr>
<tr>
<td>TSIG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS</td>
<td>Oppo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strict</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutual</td>
<td></td>
</tr>
<tr>
<td>ACL on master</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
XoT - Authentication mechanisms

Analysis: Using **TSIG, Strict TLS and an ACL** on the primary provides all 3 properties for both parties with reasonable overhead
Policy Management for XoT

- ‘Transfer Group’ - entire group of servers involved in transfers of a given zone (all primaries, all secondaries)

- The entire transfer group SHOULD have the same policy wrt (no weak point):
 - TSIG, TLS (O, S or m), IP ACL

- CHALLENGE: How to configure, enforce and test policy implementation?
 - Often involves different operators, different software, hidden servers
 - Feedback please 😊
Ongoing work

- **Latest implementation**
 - Unbound release 1.9.2 includes secondary-side AXFR XoT
 - NOTE: Server side XoT can be deployed using a TLS proxy

- **Open questions on the draft**
 - SHOULD/MUST
 - SOA query be on a TLS connection?
 - ‘Condensation’ of changes be required (optional in IXFR)?
 - Use only TLS 1.3 or later?
 - Padding - what policy?
Padding Policy

- Requirements could be context specific

- Packet sizes and timings vary depending on several factors:
 - Frequency of updates (manual reload vs steady dynamic updates vs batch dynamic)
 - ‘Condensation’ of changes
 - DNSSEC signed (NSEC/NSEC3)
 - Ongoing resigning of records as signatures expire (spikes or jittered)
 - Updates trigger resigning -> new RRSIGs

- Next slides show two extremes of patterns/packet sizes
Simplest IXFR pattern (unsigned zone with regular updates)

- Unsigned zone with records added every 10 seconds
- Smallest XFR response packet possible would be 5 records:
 - 1 new record
 - 4 SOAs
- Order of few hundred bytes (~250 in this case)
- Packet size can indicate record changes but adding and changing are hard to distinguish (and name compression happens)
Single IXFR exchange for large DNSSEC NSEC3 signed zone (no updates)

- Update triggered purely by resigning of signatures (zone signed with jitter)
- 1 SOA change -> 12 RRSIGs regenerated
- 28 records in response
 - 12 removes
 - 12 adds
 - 4 SOA records
- Each record averages just over 100 bytes, **response is ~3000 bytes**
Multiple IXFRs for large DNSSEC NSEC3 signed zone (one update shown)

- Periodic resigning dominates
- Transfers every 5s, on a separate TCP connection
- Responses clustered around multiples of 3k bytes (1 SOA change) - note no condensation of changes
- Anomaly at 77s is caused by a single record update to the zone
Multiple IXFRs - large dynamic DNSSEC NSEC3 signed zone (many updates)

- Updates to zone every few seconds
- If updates are frequent, size pattern is more complex
- But answers still dominated by RRSIG records
- Still see 5s intervals
Take aways

● **Padding specifics**
 ○ Unsigned zones can directly leak number of record updates even when encrypted
 ○ Re-using a single connection for multiple zones would disguise the update pattern (as well as being a performance gain)
 ○ DNSSEC signing with jitter disguises the actual updates, but pattern varies with zone size and signing details

● **Future work for XoT in general**
 ○ Should some signalling be added (using EDNS0)? Useful for multiple aspects...