The Quantum Blockchain Cloud (or: buzzword compliance in the age of quantum computing) Roland van Rijswijk-Deij

Quantum Computing Hype Cycle Just Getting Started

Quantum computing could be to the 2020s what cloud computing was to the 2010s

By Dana Blankenhorn, InvestorPlace Contributor Jul 25, 2018, 1:24 pm EST

Quantum Computing Under Hype Cycle and Market Clock Scrutiny

With new technology come the plaudits and the critics. Quantum computing is no different from any other sector

By James Dargan - August 1, 2019 💿 46 📃 0

April 18, 2019 | Contributor: Kasey Panetta

Quantum computing is not a cure-all for business computing challenges

Time

As of July 2018

Article

Quantum supremacy using a programmable superconductingprocessor

https://doi.org/10.1038/s41586-019-1666-5

Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann^{1,6}, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi¹, Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao Mi¹, Kristel Michielsen^{11,12}, Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, John C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung^{1,13}, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga^{1,14}, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹ & John M. Martinis^{1,5}*

UNSUPREMACY

10.23.19

• The amount of hyperbole is mind boggling

 Google's "quantum supremacy" was compared to the Wright brothers' first flight moment

• How can we know what is true or not?

really no longer safe? Hopefully this talk will help.

The hype isn't helpful!

• Is quantum computing really happening? Is our public key cryptography

Hackernoon sez it better...

Quantum Computing: Is it the end of blockchain?

June 3rd 2018

TWEET THIS

Bockendin VS. Jantum Computing

Is this the end of blockchain?

Some facts

- same time (in superposition)
- states can be linked

 - It also plays a role in breaking classic public key cryptography

• Quantum computers have qubits, which - as many of you may already know - can simultaneously encode any value between 0 and 1 at the

• The trick with *qubits* is that they can be *entangled*, that is: their quantum

This leads to some weird properties, such as "quantum teleportation"

• It turns out there are many ways in which qubits can be created • Think of this as "hard drive" vs. "tape drive" vs. "flash drive" Many of these methods have some extreme requirements (very very cold environments, diamonds, powerful lasers, ...) • The holy grail is keeping qubits stable; current records are in the order of

a minute

Physical vs. logical qubit

- It turns out quantum computers are inherently noisy and unreliable;
- reliable logical qubits
- what type of qubits are they talking about?

consequently, you need many physical qubits to create one logical qubit

• To perform error-free computations on a quantum computer, you need quantum error correction, to get from physical unreliable qubits to

• This can cause serious confusion; when the claims start flying that we need hundreds or millions or billions of qubits to break cryptography,

OK, but what about D-Wave?

- D-Wave regularly shows up in discussion about quantum computing
- Current model is claimed to have 2048 qubits, with a new model claiming 5000 qubits by mid-2020
- So are we done by mid-2020? No more RSA or Elliptic Curves? Some news outlets seem to think so (the picture on the right is from a scare-tactic Forbes article on quantum)

Not so fast (after all)

- D-Wave is not a general purpose QC, instead it does something called "adiabatic quantum computing"
- The jury is still out on whether this provides a real speed-up over classic computing, experts disagree
- The documentation is also unclear, but it appears that the 2048/5000 qubit claim talks about physical qubits
- Most importantly, though, D-Wave's systems cannot run Shor's algorithm (more about that in a minute)

Time for a quick summary

- Making stable qubits is really hard
- Qubits are highly unreliable
- You need orders more physical qubits to create logical qubits
- The state of the art are machines with some 50-ish logical qubits with limited stability

Photo by Chris Liverani on Unsplash

Shor's algorithm

- In 1994 prof. Peter Shor (see picture) devised an algorithm to factor very large numbers (think: RSA) much more efficiently on quantum computers
- This was touted as the "killer app" for quantum computers (which many claim had been a niche interest until then)
- His algorithm requires a stable general purpose quantum computer to execute; let's assume that exists for the sake of argument

- Researchers are trying to improve Shor's algorithm
- To drive down the requirements to break common public key algorithms
- They do this without actual access to a working QC (awesome!)
- Take, for example, this table from [6] (references at end of deck):

	Physical assumptions			Approach		Estimated costs			
Historical cost	Physical gate	Cycle time	Reaction time	Physical	Distillation	Execution	Physical q	ubits Expected runtime	Expected vo
estimate at $n = 2048$	error rate	(microseconds)	(microseconds)	connectivity	strategy	strategy	(million	s) (days)	(megaqubite
Fowler et al. 2012 [9]	0.1%	1	0.1	planar	1200 T	single threaded	1000	1.1	1100
O'Gorman et al. $2017 [18]$	0.1%	10	1	arbitrary	block CCZ	single threaded	230	3.7	850
Gheorghiu et al. 2019 [19]	0.1%	0.2	0.1	planar	1100 T	single threaded	170	1	170
(ours) 2019 (1 factory)	0.1%	1	10	planar	1 CCZ	serial distillation	16	6	90
(ours) 2019 (1 thread)	0.1%	1	10	planar	14 CCZ	single threaded	19	0.36	6.6
(ours) 2019 (parallel)	0.1%	1	10	planar	28 CCZ	double threaded	<mark>20</mark>	0.31	5.9

Research to improve Shor

- Researchers are not just trying to improve Shor
- More fundamentally (because it is required for other quantum) algorithms) they are trying to improve error correction
- One of the latest developments is called "surface codes"; these purportedly work better on "noisy" qubits
- In the context of Shor: they require approximately 15,000 physical qubits per logical qubit for qubits with an error rate of 10⁻³ (state of the art)

Research to improve QECC

So where are we with Shor?

Public Key System	Key size	Security	Logical qubits required	Physical qubits required	Running time
	1024 bits	80 bits	2,050	8.05x10 ⁶	3.58h
RSA	2048 bits	112 bits	4,098	8.56x10 ⁶	28.63h
	4096 bits	128 bits	8,194	1.12x10 ⁷	229h
	256 bits	128 bits	2,330	8.56x10 ⁶	10.5h
ECC	384 bits	192 bits	3,484	9.05x10 ⁶	37.67h
	512 bits	256 bits	4,719	1.13x10 ⁷	55h

Source: [2] -- terms and conditions apply 🤪

That previous slide...

- Has a lot of assumptions, none of which hold today
- So the \$64 million question is: when, if ever, will these assumptions hold?
- An oft-quoted person is Michele Mosca, whose most recent prediction puts the likelihood of a quantum computer that can break RSA 2048 in the next decade at one in six

NOBODY KNOWS I'M GAY

picture source: represent.com

So what do the experts agree on?

- Shor will ever be built
- Equally, nobody claims that it can never be built
- There is lots and lots of parallel research going on, all of which requires major breakthroughs to get there

Nobody really knows if a quantum computer good enough to run

• The best thing you can do: keep a keen eye on post-quantum crypto!

- A handy way to reason about when you should really take action is what is often referred to as "Mosca's Inequality": X + Y > Z
 - where: $\mathbf{X} = \text{the amount of time you want to keep your data secret}$ **Y** = the amount of time you take to transition to PQC **Z** = when we expect QC's to be able to run Shor
- The problem, again, here is that **nobody really knows a sensible value** for Z in this equation

The experts are on it

President Donald J. Trump signs the "National Quantum Initiative" into law

More hyperbowl...^H^H^H^H...bole

picture source: Wikipedia

Quantum Key Distribution

• I assume most (if not all?) of you are familiar with One-Time Pads?

B1 PONML	FGHIJKLMN KJIHGFEDC	OPORSTUVE BA9876543	XYZ01234567 2102YX¥VUTS
ABCDE 82 imsfe	FGHIJKLMN DCBA98765	OPORSTUVW 43210ZYXW	VUTSROPONHL
48CDE	FGHIJKLMN RFEDCBA98	0 0 085TUVW 76543210Z	XYZ01234567 YXWVUTSROPO
ABCDE 64 JIHGFI	EDCBA9876	PORSTUVW 543210ZYX	XYZ61234567 WVUTSROPONH
85 BASE	FGHIJKLMN(554321#ZY)		XYZO1234567 ONMLKJIHGFE
06 EDCBA		PORSTUVE	XYZØ1234567 Roponmlkjih
			XYZ01234567 Ingfedcba98
			XYZØ1234567 98765432102
			XYZØ1234567 93210ZYX¥VU
•			XYZØ1234567 TSROPONMLKJ
			XYZ01234567 32102YXWVUT
			XYZO1234567

From: A History of U.S. Communications Security (Vols. I and II);

the David G. Boak Lectures, National Security Agency, 1973 https://www.governmentattic.org/18docs/Hist_US_COMSEC_Boak_NSA_1973u.pdf

789 SRQ	26	ABCDEFGHIJKLMNOPORSTUVWXYZØ123456789 NMLKJIHGFEDCBA9876543216ZYXWVUTSROPO
789 Lkj	27	ABC DEFGHIJKLMNOPORSTUVWXYZ0123456789 ZYXWVUTSROPONMLKJIHGFEDCBA9876543218
789 ONM	28	ABCDEFGHIJKLMNOPORSTUVWXYZ0123456789 J21 DZYXWVUTSROPONMLKJIHEFEDCBA987654
789 Mlk	29	ABCDEFGHIJKLMNOPORSTUVWXYZ8123456789 FEDCBA9876543210ZYXWVUTSROPONMLKJIHG
789 EDC	Ja	ABCDEFGHIJKLMNOPORSTUVWXYZB123456789 LKJIHGFEDCBA9876543218ZYXWVUTSROPONH
789 HGF	31	ABCDEFGHIJKLMNOPORSTUVWXYZ0123456789 21027XWVUTSROPONHLKJIHGFEDCBA9876543
789 876	32	ABCDEFGHIJKLMNOPORSTUVWXYZ0123456789 432102YXWVUTSROPONMLXJIHGFEDCBA98765
ZPX ZYX	33	ABCDEFGHIJKLMNOPORSTUVWXYZ6123456789 GFEDCBA9876543216ZYXWVUTSROPONMLKJIH
789 Uts	34	ABCDEFGHIJKLMNOPORSTUVWXYZ0123456789 65432102YXYVUTSROPONMLKJIHGFEDCBA987
789 Jih	35	ABCDEFGHIJKLMNOPORSYUV#XYZØ123456789 43210ZYX#VUTSROPONMLKJIHGFEDCBA98765
789 TSR	36	ABCDEFGHIJKLMNOPORSTUVWXYZ0123456780 EDCBA9876543210ZYXWVUTSROPONMLKJIHGF
780 (JI	37	ABC DEFGHIJKLMNOPORSTUVWXYZ0123456789 ZYXWVUTSROPONMLKJIHGFEDCBA9876543210

OKD relies on the observer effect

- QKD is used to distribute a one-time pad from A to B
- Security relies on the fact that you can tell if the message was observed
- Common implementation: polarised light through a fibre-optic cable

Photo by Umberto on Unsplash

Conceptual QKD in two slides

basis 1: rectilinear		-+= 0	
basis 2: diagonal	X	X = 0	

	message	0	1	0
	transmitted	\mathbf{X}		+
Alice	basis	\times	+	+
	basis		\times	+
	received		\mathbf{X}	-
_				

message

Bob

Conceptual QKD in two slides

	message	0	1	0
	transmitted	\mathbf{X}	+	-
Alice	basis	\times	+	+

	basis		\times	+
	received		X	+
5	message	1	1	0

Issues with QKD

- parties (am I really sending something to Bob?)
- More importantly, though, it is vulnerable to attacks
 - **Photon-splitting attack** (doesn't that sound awesome?!)
 - Trojan attack

Shining a very bright light at the message source, attack can infer chosen polarisation from reflection with 90% accuracy [7]

• It requires "classic" cryptography to authenticate the communicating

QKD relies on single photon emission, but that is actually impossible

Do we really need QKD?

- It is expensive
 - order of €25K/device, you need two!
 - oh, and you need dark fibre
- It is inefficient (bit rate in the order of 1Mbit/s over 50km)
- And there are known attacks, how many are still to come?
- Never underestimate the bandwidth of a truck full of one-time pads 🤪

Photo by VanveenJF on Unsplash

- There is a lot of hype and hyperbole about quantum computing
- Just as there is about blockchain (hence the title of this talk)
- So we have two takeaways for you:

Wrapping up

- Pay attention to Post Quantum Cryptography
- ...and give people like Andreas more €€€ for their research!

Photo by Марьян Блан | @marjanblan on Unsplash

So what is the QBC?

Well that, as they say, is simple:

It's a computer system in someone else's data centre that you don't find out actually exists until you make a transaction that needs to be persisted on a ledger after which it sets fire to said data centre, belching out more pollutants than a brown coal fired power plant in Germany

In nl.linkedin.com/in/rolandvanrijswijk

E @reseauxsansfil

roland@nlnetlabs.nl

Thank you! Questions?

References

- Sattel, S., "The Future of Computing Quantum & Qubits", (1) Autodesk, <u>https://www.autodesk.com/products/eagle/blog/</u> <u>future-computing-quantum-qubits/</u>
- Grumbling, E. and Horowitz, M. (eds.), "Quantum Computing: (2)Progress and Prospects", National Academy of Sciences, 2019, https://download.nap.edu/cart/download.cgi?record_id=25196
- Mosca, M., "Cybersecurity in an Era with Quantum Computers: (3) Will We Be Ready?", IACR Cryptology ePrint Archive, November 2015, <u>https://eprint.iacr.org/2015/1075</u>
- Vardi, M.Y., "Quantum Hype and Quantum Skepticism", editorial (4) in Communications of the ACM, Vol. 62, Issue 5, May 2019, https://dl.acm.org/citation.cfm?id=3328504.3322092
- Monroe, D., "Closing in on Quantum Error Correction", in (5) Communications of the ACM, Vol. 62, Issue 10, October 2019, https://dl.acm.org/citation.cfm?id=3363418.3355371
- Gidney, C. and Ekerå, M., "How to factor 2048-bit RSA integers in (6) 8 hours using 20 million noisy qubits", ArXiV, May 2019, https://arxiv.org/abs/1905.09749

- Jain, N., Anisimova, E., Khan, I., Makarov, V., Marquardt, C. and (7) Leuchs, G., "Trojan-horse attacks threaten the security of practical quantum cryptography", New Journal of Physics, Vol. 16, December 2014, <u>https://iopscience.iop.org/article/</u> 10.1088/1367-2630/16/12/123030
- Hoffman, P., "The Transition from Classical to Post-Quantum" (8) Cryptography", IRTF, CFRG Working Group, draft-hoffmanc2pq-05, <u>https://tools.ietf.org/html/draft-hoffman-c2pq-05</u>
- Smolin, J., Smith, G. and Vargo, A., "Oversimplifying Quantum" (9) Factoring", Nature, Vol. 499, 2013, pp. 163-165, ArXiV PDF: https://arxiv.org/pdf/1301.7007.pdf

