The Changing Landscape of the DNS
or: the Battle for the Namespace

Roland van Rijswijk-Deij
Benno Overeinder

RoN++ meeting
Introduction

• That the DNS has privacy issues is a public secret

• Protocol from 1980s with clear-text communication over UDP and TCP

• Snowden revelations just made this public secret very painful, as it turned out this was one of the Internet vulnerabilities being exploited en masse by intelligence services of the "Five Eyes"
IETF to the rescue!

- The IETF took action for many protocols post-Snowden

- October 2014: establishment of the DNS PRIVate Exchange (DPRIVE) working group

- Goal: analyse privacy issues in the DNS and propose protocol changes to alleviate these
First step: identifying problems

- **RFC 7626** gives a comprehensive overview of privacy risks in the whole DNS ecosystem

- Identifies all the points in the DNS ecosystem where privacy sensitive information can leak
Behavioural measures

• There are **two behaviour changes for** DNS resolvers **that help privacy**

• **QNAME minimisation**, where resolvers limit what parts of a query string are sent to authoritative name servers

• **Caching measures**, where resolvers can run parts of the name space locally, to limit sending, e.g., queries to the root onto the Internet
DNS over TLS

- **RFC 7858**: simple idea, let the *stub* talk to the *recursive* over a TLS connection

- Raises **some issues**:
 - TCP + TLS **handshake overhead**
 (partially alleviated by TCP Fast Open and TLS Session Resumption)
 - **Resource consumption** on the recursor is a potential issue
 (TCP buffers, TLS state, ...)

- **Generally** speaking, though, *works* quite well
Issues in DNS over TLS

- Encrypting DNS traffic means some on-path security monitoring will no longer work; requires a shift from on-path (A) to on-resolver (B)

- Little experience in production with resource requirements of DoT

- Dedicated TCP port 853 may be blocked on networks, making DoT unavailable
DoT implementation status

- DNS over TLS is already well-supported in recursors; all the popular resolver implementations support it (Unbound, BIND, Knot Resolver, PowerDNS Recursor)

- Client support jumped with the advent of Android P (DoT support, enabled by default)

- Other end users can use, e.g. getDNS Stubby

- Service providers also widely support it (all cloud resolvers, but also, e.g., SURFnet DNS resolvers, which use Unbound)
Next steps in DoT

• **Improve performance** by supporting, e.g., out-of-order processing

• **More support** in built-in system **stub resolvers** (slowly arriving, e.g., systemd-resolved now has support)

• Also use **TLS on recursor to authoritative path**; but how do we make this work? How to build the trust relationship (is it even possible/necessary?)
D'OH...
NUTS!
DONUTS
DNS over HTTPS

- Google had experimental "DNS over HTTPS" for ages; using their own REST protocol, seemed abandoned (nobody used it)

- Then an IETF draft was published, and things started moving... FAST!

- DoH working group formed in September 2017, draft adopted October 2017, RFC 8484 officially published October 2018

- Incredibly fast for the IETF; lot of momentum behind this idea
DoH basic outline

- DoH simply sends **Base64-encoded wire format DNS datagrams** over either **HTTP GET** or **HTTP PUSH**

- **Two modes** of operation:
 - **Dedicated**: the service end point **only** functions as a **DoH DNS resolver**
 - **Mixed**: DNS traffic is **mixed into other HTTP traffic**
 - DoH **server configured as** a **URI** end point in the client

"Will it blend?"
DoH, where did it come from?

- **Browser community wanted** a web-style API to access DNS

- **Argumentation** browser community uses to push for it:
 - **Enhance privacy** of browser users (encrypted transport, mixing with HTTP traffic), arguing that adoption of e.g. DoT is too slow
 - **Port 443 does not get blocked**, so can circumvent traffic filtering
 - **Improve user experience** by reducing latency (really?!)
 - **Longer term: new features** (JSON, Server Push, "resolverless")
Issues with DoH

- The rest of this talk will focus on issues with DoH in several dimensions

- Why? Because DoH may have far-reaching consequences for the DNS and the Internet

- Dimensions we will look at:
 - Issues with privacy
 - Issues for network operators
 - Impact on the DNS name space
DoH and privacy

• Proponents push DoH arguing privacy; there are issues with that claim

• DoH imports all of the privacy issues of the HTTP ecosystem into the DNS resolution process (e.g. user agent profiling), which has sparked a new Internet draft to address this

• DoH proponents appear to advocate that a "public trusted recursive resolver" (TRR) is always better. This is simply not true in many cases, consider e.g. EU citizens who are protected by the GDPR in relation to their ISP.
DoH and privacy

- **Browsers** appear on the cusp of **forcing DoH** on users.

- Mozilla has **DoH** support **in Firefox since version 61**, **still disabled**, but... **considering to enable it by default**, and their **default TRR is currently CloudFlare**.

- **Other browsers will** surely **follow** (I'm betting it's only a matter of time before Chrome will start using DoH towards 8.8.8.8 by default).

- **Users** are **highly unlikely to turn this off if it's the default**, experience with users switching to 8.8.8.8 illustrates user inertia on this.
Side step: user inertia viz. DNS

Graphs show Google Public DNS use in Ziggo's AS after a DoS attack on their resolvers

Takeaway: once users change their config, they never go back

(graph from [1])

DoH and performance

• Remember DoH proponents cite "performance" as reason to deploy?

• Firefox put "classic DNS" and DoH side-by-side (blog here)

• Here are the weasel words from the blog: "The slowest 20% of DNS exchanges are radically improved [...], while the majority of exchanges exhibit a small tolerable amount of overhead when using a cloud service. This is a good result."

• A "small tolerable amount of overhead" is an average of 6ms per query!
DoH and performance

• Bert Hubert (@PowerDNS_Bert) is running an experimental DoH service and regularly tweets about performance

Also, this means with DoH, modest 0.5% packet loss turns into a ~5% chance of things not going right & blocking also SUBSEQUENT DNS queries. With UDP, 0.5% packet loss turns into a ~1% "one off" failure rate.

So here’s a fun DNS over HTTPs (DoH) statistic. I currently measure 22 TCP port 443 packets per query. With UDP that would be 2 packets per query. So count on a factor of "10" increase in packets per second for DoH. 1/2

It is a serious point. I don’t think we can foist a 10x packet increase on people right now, with head of line blocking. I tried DoH on a less than perfect network & had to turn it off to get anything done. People will remember that. DoH might perhaps better wait for QUIC.

• Guess how he feels about DoH at the moment...
DoH and network operators

- Where **DNS over TLS may require** operators to **re-think security monitoring**, DoH makes it impossible

- Use of **DoH circumvents any local security policy** for the DNS

- Use of **DoH is (almost) impossible to track**, especially in mixed mode

- **Security officers** can look forward to **having to wrangle browser configs for managed desktops** to disable DoH and stop users from turning it back on
DoH and the DNS name space

• The **biggest** expected **impact may not be** the most **obvious**

• **Remember** that word "resolverless" a few slides back?

• Deployment of **DoH may radically change the DNS name space** as we know it

• Why?
DoH and the name space

- Browsers vendors and others have floated the idea of a "repository of TRRs" for looking up specific parts of the name space.

- Imagine a cabal very much like the CAB Forum for the X.509 Web PKI deciding on a common TRRs in browsers (and in the future OSes too).

- Suddenly, they decide how names are resolved.

- Who ever gave these folks the right to make this decision? What about the multi-stakeholder model for Internet governance?
DoH and the name space

- **Imagine** what this might mean!

- **Parts of the name space** are directly **resolved through** browser-embedded TRRs, **circumventing** the current **DNS** hierarchy

- **Next step:** **ICANN** and the current DNS hierarchy become **obsolete**

- What about the **"level playing field"**? How do I claim my name?

- Facilitates **further centralisation of the Internet**, and even **stronger monopolies for certain big players**
DoH and the name space

- **Current DNS operators** are heavily invested in an infrastructure that does UDP really well, and also handles a bit of TCP.

- For **resolver operators**, it is relatively simple to also support DoT.

- **DoH is a game changer**, it has a relatively low bar of entry for players that are already heavily invested in the HTTP ecosystem, but requires major re-engineering for "traditional" DNS players.
What will the future look like?

• No reason to attribute malice to the browser folks, they are probably just trying to do what they think is "the right thing for privacy"

• That "right thing" may have unintended and irreversible side effects

• Because it is tilting thinking about how we view the name space

• This has not happened in earnest for over 30 years

• So we should be paying close attention!
What can/should you do?

• If you do not support DNS over TLS on your resolver: turn it on!

• Consider running a DNS over HTTPS server, to at least offer some diversity

 • This is not simple; there is insufficient open source code available to do this (we have plans, but DoH is a beast when you're used to implementing "regular" DNS)

• GET INVOLVED IN THE DEBATE! If you agree DoH has issues, speak up!
Thank you! Questions?

LinkedIn: nl.linkedin.com/in/rolandvanrijswijk

Twitter: @reseauxsansfil

Email: roland@nlnetlabs.nl