DNSSEC Operational Practices: The Good, The Bad and The Ugly

Roland van Rijswijk-Deij
Nordic Domain Days

joint work with: Tho Le, Luca Allodi and Nicola Zannone of TU Eindhoven
DNSSEC in the second decade

- Mass deployment of DNSSEC took off in 2008, after "Kaminsky"
- We have just entered the second decade of DNSSEC
- Things seem to be going well:
 - Vast majority of top-level domains support DNSSEC
 - Number of validating resolvers still growing
- But also: many "important" domains still not signed (Google, Facebook, Amazon, ...)

DNSSEC in the Nordic region

- .no 58%
- .se 54%
- .is 3%
- .dk 2%
- .fi 1%

For comparison:

- .com 0.7%
- .net 1%
- .org 1%

But also:

- .nl 53%

What do these have in common?
Incentives, incentives, incentives, incentives!
Studying incentives

- **Both** .nl and .se **have financial incentives for registrars** to encourage DNSSEC deployment.

- These **incentives are modest** (a few percent discount on registration).

- This means that the incentives **only pay off financially if you deploy** DNSSEC **for 100,000s of domains**.

- While this **clearly** has **led to mass deployment** of DNSSEC, we wondered if it has **also led to secure deployments**?
Study goals

• We wanted to **study** the **quality** of DNSSEC deployments **in terms of security** as defined in DNSSEC best practices

• Our **assumption**: only large operators benefit economically from incentives, therefore **we expect small operators to deploy** DNSSEC with a different motivation

• **Hypothesis:**
 "Despite the presence of 'per-domain' economic incentives in .nl and .se, large DNS operators deploy DNSSEC with lower compliance to security guidelines than small DNS operators."
DNSSEC in two slides

KSK

ZSK

DNSKEY set

signs

RRs

contains

DS

root zone

.com zone

KSK

ZSK

DNSKEY set

signs

RRs

contains

DS

hash of

example.com zone

KSK

ZSK

DNSKEY set

signs

RRs

contains

www
DNSSEC in two slides

- "from" key
- "to" key
- zone signatures
- rollover moment

- active signing key
- pre-publication of new key
- post-publication of old key
- signatures with old key
- signatures with new key
Best Current Practice

<table>
<thead>
<tr>
<th>Aspects</th>
<th>NIST recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key size</td>
<td>- ECDSA keys.</td>
</tr>
<tr>
<td></td>
<td>- RSA: KSKs \geq 2048 bits and ZSKs \geq 1024 bits.</td>
</tr>
<tr>
<td>Key algorithm</td>
<td>- Recommended: Algorithms 8 and 10.</td>
</tr>
<tr>
<td>Key rollover</td>
<td>KSKs/CSKs:</td>
</tr>
<tr>
<td></td>
<td>- ECDSA keys and RSA keys (with key size \geq2048 bits): rollover within 24 months.</td>
</tr>
<tr>
<td></td>
<td>ZSKs:</td>
</tr>
<tr>
<td></td>
<td>- 1024-bit RSA keys: rollover within 90 days.</td>
</tr>
<tr>
<td></td>
<td>- RSA keys’ size between 1024 - 2048 bits: rollover within 12 months.</td>
</tr>
<tr>
<td></td>
<td>- ECDSA keys and RSA keys (with key size \geq 2048 bits): rollovers within 24 months.</td>
</tr>
</tbody>
</table>
For this study we used data from the OpenINTEL project

https://openintel.nl/
Approach

<table>
<thead>
<tr>
<th>TLDs</th>
<th>Measurement Period</th>
<th>#Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>.net</td>
<td>2015-02-28 - 2017-07-31</td>
<td>13,011,428</td>
</tr>
<tr>
<td>.org</td>
<td>2015-02-28 - 2017-07-31</td>
<td>9,373,214</td>
</tr>
<tr>
<td>.nl</td>
<td>2016-02-09 - 2017-07-31</td>
<td>5,440,975</td>
</tr>
<tr>
<td>.se</td>
<td>2016-06-07 - 2017-07-31</td>
<td>1,440,244</td>
</tr>
</tbody>
</table>

- For comparison
- Focus of study

- Analyse RRSIG and DNSKEY records for **all signed domains every day**
 to check key sizes, algorithms and key rollovers
Rollover complexity

1. Monthly view

2. Merge via key tag

3. Validate duplicated key_tag keys

4. Add

5. Identify key effective period

6. Compare to the last day of a month

Active keys

Retired keys

Previous keys

Keys
Large versus Small

Just 14 operators responsible for over 80% of signed domains

Just 3 operators responsible for over 80% of signed domains
All the DNSSEC large and small

- To check if **large operators** are more likely to deploy DNSSEC under an incentive, we compared .com/.net/.org to .nl and .se

<table>
<thead>
<tr>
<th>TLD</th>
<th>#Domains</th>
<th>#Signed</th>
<th>%</th>
<th>#Domains</th>
<th>#Signed</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>.com</td>
<td>93,464,626</td>
<td>712,162</td>
<td>0.76%</td>
<td>23,349,922</td>
<td>224,251</td>
<td>0.96%</td>
</tr>
<tr>
<td>.net</td>
<td>10,412,605</td>
<td>114,687</td>
<td>1.10%</td>
<td>2,598,823</td>
<td>26,400</td>
<td>1.02%</td>
</tr>
<tr>
<td>.org</td>
<td>7,501,310</td>
<td>85,166</td>
<td>1.14%</td>
<td>1,871,904</td>
<td>20,342</td>
<td>1.09%</td>
</tr>
<tr>
<td>.nl</td>
<td>4,353,518</td>
<td>2,736,393</td>
<td>62.85%</td>
<td>1,087,457</td>
<td>92,791</td>
<td>8.53%</td>
</tr>
<tr>
<td>.se</td>
<td>1,153,129</td>
<td>723,532</td>
<td>62.75%</td>
<td>287,115</td>
<td>13,794</td>
<td>4.80%</td>
</tr>
</tbody>
</table>

- **Takeaway:** uptake among large operators is an order of magnitude higher under an incentive!
Results for large operators in .nl

<table>
<thead>
<tr>
<th>DNS operator</th>
<th>Master NS†</th>
<th>#Signed</th>
<th>Algorithm</th>
<th>KSK size</th>
<th>ZSK size</th>
<th>ZSK Rollover</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransIP</td>
<td>*.transip.net.</td>
<td>265,341</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Metaregistrar BV</td>
<td>*.metaregistrar.nl.</td>
<td>386,913</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Hostnet BV Network</td>
<td>*.hostnet.nl.</td>
<td>359,793</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Cyso Hosting</td>
<td>*.firstfind.nl.</td>
<td>246,385</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Argeweb BV</td>
<td>*.argewebhosting.eu.</td>
<td>101,993</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Openprovider</td>
<td>*.openprovider.nl.</td>
<td>79,367</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Village Media BV</td>
<td>*.webhostingserver.nl.</td>
<td>67,150</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Hosting2GO</td>
<td>*.hosting2go.nl.</td>
<td>64,568</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Flexwebhosting BV</td>
<td>*.flexwebhosting.nl.</td>
<td>60,753</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Internedservices</td>
<td>*.is.nl.</td>
<td>57,033</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>Neostrada</td>
<td>*.neostrada.nl.</td>
<td>56,295</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>One.com</td>
<td>*.one.com.</td>
<td>55,397</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>PCextreme</td>
<td>*.pcextreme.nl.</td>
<td>50,102</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>AXC B.V.</td>
<td>*.axc.nl.</td>
<td>47,861</td>
<td>x</td>
<td></td>
<td>+</td>
<td>x</td>
</tr>
</tbody>
</table>

- **Measured over 18 months** (so no KSK rollover)

Takeaways:

- **Algorithm and key sizes** mostly OK
- **ZSKs** are mostly 1024-bits (borderline secure) but are never rolled!
Results for large operators in .se

• **Measured over 14 months**
 (so no KSK rollover)

Takeaways:

• Story **similar to .nl**

• **Algorithm and key sizes**
 mostly **OK**

• **ZSKs** borderline secure
 but **never rolled!**

<table>
<thead>
<tr>
<th>DNS operator</th>
<th>Master NS†</th>
<th>#Signed</th>
<th>Algorithm</th>
<th>KSK size</th>
<th>ZSK size</th>
<th>ZSK Rollover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopia AB</td>
<td>*.loopia.se.</td>
<td>282,604</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>One.com</td>
<td>*.one.com.</td>
<td>221,372</td>
<td>✓</td>
<td>✰</td>
<td>✓+</td>
<td>✗</td>
</tr>
<tr>
<td>Binero AB</td>
<td>*.binero.se.</td>
<td>123,131</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

Measured over 14 months

Story similar to .nl

Algorithm and key sizes mostly OK

ZSKs borderline secure but never rolled!
What about the smaller operators?

Takeaways: Domains from **small operators** much more likely to roll their ZSKs properly

Compliance is **independent of size**
Why are large operators not rolling?

- Are you in the room? I'd love to hear from you!
- DNSSEC is complex; rollovers are arguably hard and potentially risky
- We know (from private communication) some large operators implement their own DNSSEC signer systems
- Rolling keys not a requirement to qualify for the DNSSEC incentive
- Smart operators know: reduce complexity -> reduce operational risk
- No one wants to be called out of bed at 3AM because of a DNSSEC problem
I have a theory about .se

• I had a quick look in OpenINTEL last week, for RSA keys in .se:

<table>
<thead>
<tr>
<th>key size</th>
<th>key type</th>
<th>#dns records</th>
<th>#unique keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>2048</td>
<td></td>
<td>651255</td>
<td>202802</td>
</tr>
<tr>
<td>2048</td>
<td></td>
<td>1841</td>
<td>1839</td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td>257</td>
<td>1179</td>
</tr>
<tr>
<td>1024</td>
<td></td>
<td>256</td>
<td>1171742</td>
</tr>
</tbody>
</table>

Lots of key sharing

• Note: rollovers are even trickier when you're sharing keys
Conclusions

• Incentives got us massive DNSSEC deployment
• But not necessarily secure deployments!
• So perhaps it is time to tighten incentive requirements
• How to do this while keeping operators on board?
Recommendations

• Need to account for operational reality; operators want to minimise risk

• One way forward: use Elliptic Curve signing algorithms!
 • Smaller keys that are cryptographically much stronger (e.g. ECDSA P-256 roughly equivalent to 3072-bit RSA)
 • Not rolling a key is not a problem; according to current insights, these keys are good for 30+ years*
 • Widely supported by validating resolvers (source: rootcanary.org)
Thank you! Questions?

LinkedIn: nl.linkedin.com/in/rolandvanrijswijk

Twitter: @reseauxsansfil

Email: roland@nlnetlabs.nl