Validating Caching Resolver

Wouter Wijngaards
wouter@nlnetlabs.nl (NLnet Labs)
Overview

• Introduction: Why another resolver?
• Features
 – Anchors and Authority
 – Paranoia
• Design
• Tests
 – Cache performance
 – Recursion performance
• Summary
Introduction

• Why a new resolver?
 – Code diversity in DNS server monoculture
 – Alternative validator choice for BIND 9

• Deployment targets
 – Workgroup local DNS resolvers
 – Large caching resolver installations (ISP)
 – Validating library for applications

• About NLnet Labs
 – A not for profit, public benefit foundation
 – Developed NSD; DNSSEC aware, high performance authoritative name server
Development History

• The first architecture and a Java prototype was developed between 2006-2007.
 – Matt Larson, David Blacka
 – Bill Manning
 – Geoff Sisson, Roy Arends
 – Jacob Schlyter

• NLnet Labs joined early 2007
 – porting the prototype to C and taking on maintenance.
 – First public development release on http://unbound.net/ in jan 2008

• Current release candidate 0.11
 – Release of 1.0 expected within a month
 – Substantive testing and feedback of this and earlier versions by:
 • Alexander Gall (switch.ch)
 • Ondřej Surý (.cz)
 • Kai Storbeck (xs4all.nl)
 • Randy Bush (psg, iij)
Features: Basic

- DNS Server
 - Recursion
 - IPv4 and IPv6 dual stack support
 - Access control for DNS service: not open recursor
 - DNSSEC validation
 - NSEC, NSEC3, ready for SHA256
- Tools
 - Unbound-checkconf
 - Unbound-host: validated host lookup
- Documentation
 - man pages, website and in code (doxygen)
- Thread support (optional): scalable performance
Features: Anchors and Authority

• Trust anchors: *feature rich*
 – Rbtree for anchors – many islands
 – DS and DNSKEY can be used for the anchor
 – Zone-format and bind-config style key syntax

• Authority service: *absent*
 – Localhost and reverse (RFC1918) domains
 – Can block domains
 – Not authoritative server, use stub zones
Features: Paranoia

• Forgery resilience: *full featured*
 – Scrubber filters packets for out-of-zone content
 – Follows RFC2181 trust model
 – Follows all recommendations from dnsop draft
 • Query name matching
 • Strong random numbers for ID
 • UDP source port random
 • IP source address random
 • RTT banding
Design

– Worker threads access shared hashtable cache
 • Cache LRU, memory use can be configured
– Modular design, state machines work on query
– Mesh of query dependencies

http://www.nlnetlabs.nl/
Tests

• Regression tests
 – Unit testing of code
 – State machines tested on replay traces
 – Functionality tests (start daemon, make query)

• Beta tests
 – Test in the real world

• Performance tests
 – Cache performance
 – Recursion performance
 • Test against a known, stable environment
Testlab for Resolvers

Tcpreplay of recursive UDP queries

Root-hints configuration

Recursive caching DNS server

Authority servers

Recursion domains are of the form:

```
www  . example  . com  . 1
10 1000 10
```
Summary

• Unbound – Validating Caching Resolver
 – Open source: BSD license
 – DNSSEC
 – Standards compliant
 – High performance
 – Portable: Linux, *BSD, Solaris, MacOS/X

• Support by NLnet Labs
 – Changes to support announced 2 yrs advance

• Get 0.11 at http://unbound.net