
Flexible and Robust Key Rollover in DNSSEC
Yuri Schaeffer, Benno Overeinder, and Matthijs Mekking

NLnet Labs, Amsterdam, The Netherlands
Email: {yuri,benno,matthijs}@NLnetLabs.nl

Abstract—DNSSEC security extensions make use of a public-
private key pair to sign and validate origin and integrity of DNS
data. The ability to renew keys is a standard operational practice
in the deployment of DNSSEC. This key renewal, or actually key
rollover, is a complex and error prone process. We propose a new
method for key rollover in which not the individual procedural
steps of a rollover are specified, but the validity of a step in
the rollover process is specified. The rollover process can now
find an optimal and correct path from an old key to a new
key. The proposed method is robust, is effective in emergency
situations in which a compromised key must be rolled over in
the shortest amount of time possible, and allows for efficient
combined rollover of multiple keys. The new key rollover method
presented in this paper is implemented and integrated within the
OpenDNSSEC software framework.

I. INTRODUCTION

The Domain Name System (DNS) [1] is an infrastructure
that allows the usage of human readable names to address
hosts and services on the Internet. As such, DNS is considered
a critical infrastructure for many uses and users, like in finance,
businesses, governments, news, and social media.

One of the largest threats to DNS dependability is the injec-
tion of fake (incorrect) responses by DNS cache poisoning [2],
[3]. In the past, various patches have been applied to improve
the security of DNS and to counter the threats discovered. To
end the introduction of ad-hoc solutions to new threats, a more
fundamental solution to secure the DNS protocol has been
developed. DNS Security Extensions (DNSSEC) [4] is a set
of extensions to DNS which provide data origin authentication,
data integrity, and authenticated denial of existence. With these
extensions, it is possible to detect fake responses to DNS
queries.

DNSSEC works by digitally signing DNS data using public-
key cryptography. The public key of the DNS root zone is
well-known and used to sign data and other keys, which in
turn can be used to sign yet other data and keys, and so on
to an arbitrary depth. The correctness of signed DNS records
can now be authenticated via an authentication chain, starting
with the set of verified public keys for the DNS root zone.

As with any public-key system, the trust in a key decreases
over time. The more often a key is used, the higher the chance
the key material is compromised by some means, e.g., by
reverse engineering the private key. To maintain the integrity
of the system, individual keys in the chain need to be renewed.
Operational reasons to renew keys are due to new hardware,
new software, new employees, new parameters, and registrar
exercises for emergency situations [5], [6], [7]. Unfortunately,
renewing keys is a complex, operational task as DNS heavily

relies on distributed caching of information. If one would
simply renew keys by switching from old to new, the validation
process could have a mixed view on the data (e.g., a new key
but old signatures) and declare the zone invalid. Thus rather
than switched, keys must be rolled.

The key rollover procedure can be realized in many ways,
but the correct order of operations is important. DNSSEC is
not forgiving, and an incorrect order of rollover operations
may result in a loss of trust in all derivative keys. Putting
differently, there are various transition paths to roll over a
key, but only some of them are valid transition paths.

The common and most straight forward approach is a
procedural specification of a set of possible correct rollovers
to roll a key A to a new key B. Preferably, this set of specified
rollovers is relatively small, as each different rollover would
require its own procedure to realize a valid transition path. We
propose an alternative approach that defines a set of valid key
states and goals that have to be realized in the rollover of a
key. Instead of specifying a set of specific rollover transition
paths, we specify the conditions whether a transition results
in a valid key state. The system will find the shortest safe
path towards a desired state. In principle, this allows the key
rollover process to find arbitrary valid state transition paths
for one or more keys combined. The potential of concurrent
key rollovers is of large importance for emergency situations,
where a compromised key has to be replaced as soon as
possible, even if an ongoing key rollover has to be aborted.

In this paper, some background on DNSSEC and key
rollover is presented in Section II. Next, the main ideas
and concepts behind valid key states and their transitions
are presented in Section III. In Section IV, the concepts are
combined and formal rules about the validity of a set of keys
are specified. An implementation of the new approach will
be part of the OpenDNSSEC1 software and some key rollover
traces are shown, see Section V. Finally, Section VI concludes
the paper with some future work and perspectives.

II. BACKGROUND

The main goal of DNSSEC is to protect against data
corruption [8]. While the intricacies of DNSSEC go far beyond
the scope of the paper, some specific context will be presented
related to key states and rollover.

The client-side of the DNS is called a resolver. It is respon-
sible for initiating and sequencing the queries that eventually
results in the full resolution of a resource, e.g., a domain name

1http://www.opendnssec.org/



into an IP address. A resolver that implements DNSSEC, a
validator, will have to determine the security status of data
received in responses. Such resolvers, are configured with a
trust anchor, preferably the root key set, from which it can
build a chain of trust to authenticate zone data. If the resolver
is able to build such an authentication chain from the trust
anchor to the data, the status of that data will be marked
as secure. If this chain is known to exist, but cannot be
constructed, the data will be considered as bogus.

DNSSEC adds new records to an existing DNS zone. The
DNSKEY record holds a public key and the cryptographic
algorithm (e.g., SHA-1, SHA-256, etc.) that is used with the
key. The signatures created with the key are stored in RRSIG
records. The DS record helps in constructing an authentication
chain and is put in the upper, parental side of a delegation.
With a hash, it points to a DNSKEY record in the delegated
child zone. This is how DNSSEC secures delegations. Fur-
thermore, NSEC and NSEC3 records are added to provide
authenticated denial of existence, but these records are less
relevant with respect to our new approach.

Records are stored as resource record sets (RRsets) in
caches and may be validated again at a later point in time.
If present, the signatures are attached to the RRset as RRSIG
records. They are accompanied with a Time-To-Live (TTL),
the maximum amount of time that a resolver can hold this
data in the cache.

In order to validate an RRset, a validator needs to acquire
the corresponding DNSKEY, which contains the public key.
Usually, the validator is configured with the root trust anchor,
and the required DNSKEY can be obtained through secure
delegations. It is verified that the root trust anchor matches
the DNSKEY at the apex of the zone and then the DS RRset
can be used to validate secure delegations. The DS record
identifies a DNSKEY in the child zone, which can be used
to validate RRsets in that zone. This process is repeated for
each intermediate delegation. Once the DNSKEY matching
the signature is found, the data can be validated.

A. Key Types

Keys can be of different types, depending on their role. A
Key Signing Key (KSK) is used to authenticate the zone signing
keys. Such key is solely responsible for creating a signature
for the DNSKEY RRset. A Zone Signing Key (ZSK) creates
the signatures for all other RRsets and is used to authenticate
the associated zone data. A key can have both roles at the
same time, sometimes referred to as a Combined Signing Key
(CSK).

B. Key Rollover

The ability of replacing keys is an important aspect of
DNSSEC. With key rollover, the successor key will not be im-
mediately visible to validating resolvers due to the distributed
caching of keys. Also, data published in previous versions of
the zone may still exist in caches. The timing of when to
introduce and when to withdraw data from the zone is of vital
essence. Using the wrong values for the timing parameters may

break the chain of trust and cause validators to mark data as
bogus, effectively making the zone invisible to clients on the
Internet.

For example, if key a is being replaced with key b, the
DNSKEY for key b should be pre-published first. Keeping both
keys published for a sufficient period of time allows validators
to gain knowledge of both public keys. Only after this period,
signatures created with a can be replaced with the ones created
by b. If not enough time has passed and some validators only
know about key a, these validators might be unable to validate
RRsets. Suppose an RRset that just expired from the cache.
A new query is now being directed towards the authoritative
name server, where signatures have been replaced recently.
The validator now ends up with the public key for a and an
RRset signed by b. Due to timing mistakes, this zone data can
now no longer be validated. Only when the DNSKEY RRset
expires, the new public key will be learned and the security
status will be restored.

In other words, validators must always be able to build
chains, regardless of whether the data came from the cache,
originating name server, or an intermediate, forwarding system
with its own cache. And the administrators of the secured
zones are responsible for keeping the chains of trust intact.
Current practice is to set up a procedural specification for
the rollover, so that administrators can implement the process
by following the specified steps [9]. Each step changes the
properties of the keys involved. With these key states, one can
track the progress of the rollover.

Although there exists similarity between rollovers, each
specification describes a different set of transitions to be taken
in order to correctly implement the process. Such document
is usually very complex and with a great level of detail, and
one can easily make mistakes when crafting, or implementing
them. For that reason, it would be best to keep the set of
specified rollovers as small as possible. However, zone admin-
istrators desire different flavours of rollovers. One procedure
switches keys as fast as possible, while other rollovers focus
on keeping the size of the zone and the response size to a
minimum. Local policy determines whether an administrator
will use one procedure or the other. A policy that is being
updated may trigger additional “transit” rollovers. Another
factor to consider is that the timings for ZSK rollovers differ
from those for KSK rollovers. And similar differences hold
for CSK rollovers, where keys have both roles at the same
time.

In other words, there exist many different ways to replace
keys, and each type of rollover requires its own elaborate
procedural specification of the timing parameters. Creating a
new type of rollover implies work to be done that is non-trivial
and error prone. By this complexity, most rollover procedures
are limited to replacing two keys, the operation of introducing
one and withdrawing one key. A different approach is to look
at rollovers being a process of replacing a set of keys. For
example, when switching signing schemes, two keys (a KSK
and a ZSK) are being replaced with just one CSK, or vice
versa. With the current approach this would result in a very



large number of key replacement specifications.
Another limitation is that the rollover procedures have

firmly defined the order of operations of key replacement, from
start to end. As a consequence, a concurrent rollover strategy is
not specified. Usually this is not a problem, as most rollovers
are scheduled and would not intervene with each other. But
in case of a key compromise, you would like to perform an
emergency rollover, to disable the use of the key as fast as
possible. With the current, procedural strategy, we might have
to delay the emergent event until the rollover in progress has
finished.

The complexity of the rollover procedures, in combination
with those limitations, puts a high barrier on the innovation
of key rollovers. An alternative and potentially more versatile
approach can be attained by the dynamical discovery of the
best possible rollover strategy that fits a policy.

III. KEY STATES UNRAVELED

Instead of having a specification for each different rollover
scenario, our approach focuses on whether a step in an
arbitrary rollover results in a valid situation with respect to
DNSSEC, and in effect by doing this, dynamically discover
a valid order of key rollover operations. In order to make a
clear distinction of what is a valid situation with respect to
DNSSEC, some relevant concepts need to be defined.

A. A Cache Centric Approach

The common existing approach can be called rollover cen-
tric, and considers a rollover to be a procedural specification of
multiple sequential steps with strict order and timing require-
ments, that describe the scenario from start to end. A cache
centric approach looks at the data itself from the perspective of
all caching validators in the global DNS infrastructure. More
important, it is concerned about the validity of the data, and
whether all validators are able to build a chain of trust with
the available parts, regardless where the data comes from. This
is the basic requirement in order for DNSSEC to work. Our
approach tries to convert this requirement into formal rules.
This way of thinking allows us to do everything we want
within the boundaries of DNSSEC validity, and we are no
longer limited to a sequential rollover strategy or to the number
of keys involved.

B. A View On Keys

Though there exist many ways to roll a key, all mechanisms
share the same principle: A set of existing keys needs to
be replaced by a set of new keys within the boundaries of
DNSSEC validity. Over time, all rollover transition paths will
have to introduce the DNSSEC resource records related to
the new keys, and withdraw the DNSSEC records related to
the existing keys. Validators gain information about the key
over time by querying for these records. This information
consists of the public key, stored in the DNSKEY record,
the corresponding secure delegation, the DS record, and its
created signatures as RRSIGs. Because the resource records

most probably are not published at the same time, caches can
have an incomplete view of keys.

Key states in the current rollover approach determine the
progress of the rollover. Instead of one complicate state
machine per key, we propose to maintain a state machine for
each key related resource record. This gives us four separate
state machines, relating to the records DS, DNSKEY, RRSIG
DNSKEY, and RRSIG. The latter does not represent a single
record, but rather all signatures in the zone (except for the
signature over the DNSKEY RRset). Because keys can either
be a ZSK or KSK (or both), a distinction is needed between
the signature for the DNSKEY RRset and the other signatures.

By unraveling the key states in such a way, we are able to
model the incomplete view validators can have on keys more
accurately. Each key now has its own set of interdependent
machines, one for each key related record (see Figure 1).

Hidden

Rumoured Unretentive

Omnipresent

Fig. 1. State diagram for individual records.

These machines reflect the visibility of the resource records
by all possible caches in the global DNS infrastructure. There-
fore, all machines have the same set of states. The life-cycle
of a resource record starts and ends in the Hidden state. In
this state, none of the validators is able to observe this record.
The opposite state is the Omnipresent state: all validators will
have the record in cache or are able to refetch it when needed.
The two other states represent the uncertainty in our model.
In the Rumoured state, the record is published in the zone
but not all caches will know about this record yet, while in
the Unretentive state, the record has been removed from the
zone but some caches might still have it in cache. In these
two states, one cannot rely on this record as a dependency to
build a chain of trust. It is perfectly safe to hop between the
uncertain Rumoured and Unretentive states. These transitions
allow us to prematurely end a rollover, undo a rollover, or do
multiple rollovers in parallel.



C. Key Goals

Keys are used for a certain purpose. Either a key is going to
be activated so that it can be used to perform authentication,
or it is going to be removed to make it inoperable. When
activating a key, all corresponding state machines will try to
reach the Omnipresent state. When removing a key, the goal
is to get all corresponding machines in the Hidden state. In
other words, the key goal is either Omnipresent or Hidden.

The goal of the key has a direct influence to what transitions
will be made. As long as the state is equal to the key goal,
the record is said to be stable and will not try to go to another
state. In an unstable situation, the machines will try to transit
to a state one step closer to its goal, the desired state.

D. Timing

Timing is an important aspect of key rollovers, ignoring
this could lead to an invalid DNSSEC situation. From an
administrators point of view it is important to foresee when
data becomes available to validators and when its recollection
will be lost. Those timing parameters not only cover the TTLs,
but also the delays introduced by software, zone transfers, and
registration services.

E. Formalize DNSSEC Validity

The sections above describe that each record is in a state
and has a desired state according to the associated key goal.
The transition is only possible if the new state represents a
valid DNSSEC situation. In other words, the transition must
not break the chain of trust. In order to automatically verify
this requirement a set of formal rules are defined that check
the validity of a zone. The state machines together with the
formal definition form a timed automata [10]. On the edges of
the automata will be guards that represent the formal definition
of DNSSEC validity. On the states will be timing guards that
represent the various TTLs and delays. Thanks to this timed
automata and the concept of key goals, a rollover can now
easily be defined as putting goals on a set of keys.

F. Policy

There are several considerations that can influence the
rollover strategy. For example, the so-called ZSK Pre-Publish
rollover method [5] minimizes the size of the zone and
responses during the process. The KSK Double-Signature
approach [5] limits the number of parent interactions required.
Local policy may enforce a particular strategy. However, the
DNSSEC validity rules do not care about these considerations.
Some special rules have to be added to differentiate between
policy enforced rollover strategies.

IV. A NEW WAY TO ROLLOVER

The current approach of replacing keys in DNSSEC is a
non-trivial operation. Having defined our automata and the
concept of key goals, we can specify our approach of rolling
keys. Transitions are guarded by validity, time, and policy.

Algorithm 1 shows how the state changes are made to all
keys of a zone in a single time-step. After a state change of a

record, all other records must be re-evaluated since the record
states are interdependent. After the run has completed, no
more transitions can be made at this time. Because the timing
information is available, an exact time can be determined when
a next transition is possible. There is no need (nor harm) to
run the algorithm again before that time.

It is possible that the zone reaches a complete stable state in
which case passing of time does not trigger any state changes.
In practice this means the zone needs not to be evaluated until
some external event, such as a user requesting a new rollover.

Algorithm 1 Within a single time step, bring records closer to
their goal. Return the nearest absolute time when useful work
can be done.

nextRun ←∞
repeat

change ← ⊥
for all key ∈ zone do

for all record ∈ key do
nextState ← desiredState(recordstate , keygoal )
if nextState = recordstate then
{This record is in a stable state}
continue

end if
if not policyApproval(keyring, key, record, nextState) then
{Local policy prevents transition}
continue

end if
if not transitionAllowed(keyring, key, record, nextState)
then
{This transition would make the zone invalid}
continue

end if
t ← transitionTime(record, nextState)
if t > now() then
{We are not allowed to make the transition at this time}
nextRun ← minimum(t, nextRun)
continue

end if
recordstate ← nextState
recordlastChange ← now()
change ← >

end for
end for

until not change
return nextRun

The algorithm introduces four functions:
desiredState(state, goal)

Returns the “next” state in the state machine, given
the goal and current state.

policyApproval(keyring, key, record, nextState)
Evaluates if there are any local policies preventing
the transition of this record to the next state. This
function achieves that different flavours of rollovers
are possible.

transitionAllowed(keyring, key, record, nextState)
Evaluates the transition on correctness with respect to
DNSSEC validity. See Section IV-A for more details.

transitionTime(record, nextState)
Given a record and its desired next state, calculates



the point in time when the record may take the
transition. This depends on the time of the previous
transition for this record, the TTL for this type of
record and additional introduced delays.

A. Formal Rules

In order to reason about the validity of a zone given an
arbitrary set of keys in arbitrary state, we need a formal
definition of that validity. Equations (3a) to (3i) give such
a formal definition. This set of rules is evaluated with every
attempt to transition a record from one state to another. If these
rules hold, the transition can be carried out.

This system would never bring itself in a state where its
rules no longer hold. However, it is imaginable that some
external event brings the system in such a state and no single
transition can bring it in a correct state. In this case, the
rollback process should not deadlock or give up. To handle this
situation it is allowed to remain in a bad state, but explicitly
not allowed to get in to one. More specifically, a transition is
allowed from key to key ′ if the proposition in Equation (1)
holds (with rule1 , rule2 , and rule3 defined by Equation (3)).

(¬rule1(key) ∨ rule1(key ′)) ∧
(¬rule2(key) ∨ rule2(key ′)) ∧ (1)
(¬rule3(key) ∨ rule3(key ′))

Each of the rules is a proposition about the state of the
keys currently involved in the zone. Let x, y, z be keys. D,
K, R, and S refer respectively to the resource records DS,
DNSKEY, RRSIG DNSKEY, and RRSIG. The subscript of the
record symbols D, K, R, and S denotes the key it belongs
to, and the superscript the state it is in. States correspond
to the state diagram from Figure 1: Hidden (−), Rumoured
(↑), Omnipresent (+), and Unretentive (↓). For example D↑x
indicates that the DS of key x is introduced in the zone, but
might not be propagated to all caches. For brevity we allow
multiple states as superscript: D↑+x ≡ D↑x ∨D+

x . The equality
sign (=) is used to indicate that resource records are in the
same state.

We also define a recursive successor relation, Equation (2),
z

T

�x where z is the successor of x for record type T .

z
T

�x : Dep(x, T ) = ∅ ∧
(
x ∈ Dep(z, T )∨

∃y ∈ Dep(z, T ) (y 6= z ∧ y
T

�x∧
DyKyRySy = DzKzRzSz)

)
(2)

This relation refers to types of rollovers in which a certain
record type is going to be swapped. For example, with the
ZSK Pre-Publish rollover method the signatures created by
the successor key z are being propagated first, so that the
DNSKEY records for x and z can be swapped later on. In
this case, we say that z is the successor of x for the DNSKEY
record type.

Here, x is the predecessor key that is going to be withdrawn
from the zone. The set Dep(x, T ) is a separately administrated

set of keys that have a dependency on x for record type T .
For example, with the ZSK Pre-Publish method, the DNSKEY
of key x can be withdrawn if there is a succeeding DNSKEY
of key z introduced in the zone. Key x now depends on key
z, therefore x will be in the set Dep(z, T ). The successor
relation requires that the predecessor key must not have any
other keys relying on it. In other words, the set Dep(x, T )
must be empty.

It is possible to roll keys faster than the time required to
finish the rollover procedure. For example, consider the keys x,
y, z. Key x is currently published and is going to be replaced
by y. The DNSKEY for x is removed from the zone and at
the same moment the DNSKEY for y is introduced. Key y is
a direct dependency for key x and is therefore the successor of
x. However, before the new DNSKEY has been propagated,
key z will replace key y. The DNSKEY for y is removed
and moves into the same state as key x. Key y now directly
depends on key z, and key z will be a new successor key for
x. As long as the DNSKEY for z is not known to all caches,
the RRSIGs of x, y, and z must actively be published.

Finally, let us define K as the complete set of keys as-
sociated with the zone, and X a subset of K with elements
of the same cryptographic algorithm as key x: X = {k ∈
K|alg(k) = alg(x)}. The rules defining the validity of a zone
are now given by:

rule1(x) :

∃y ∈ K (D↑+y ) (3a)

rule2(x) :

∃y ∈ X (D+
y K

+
y R+

y ) ∨ (3b)

∃y, z ∈ X (D↑yK
+
y R+

y D
↓
zK

+
z R+

z ∧ y
D

�z) ∨ (3c)

∃y, z ∈ X (D+
y K

↑+
y R↑yD

+
z K

↓
zR
↓−
z ∧ y

K

�z) ∨ (3d)

∀y ∈ X (D−y ∨ ∃z ∈ X (K+
z R+

z (Dy = Dz))) (3e)

rule3(x) :

∃y ∈ X (K+
y S+

y ) ∨ (3f)

∃y, z ∈ X (K↑yS
+
y K↓zS

+
z ∧ y

K

�z) ∨ (3g)

∃y, z ∈ X (K+
y S↑yK

+
z S↓z ∧ y

S

�z) ∨ (3h)

∀y ∈ X (K−y ∨ ∃z ∈ X (S+
z (Ky = Kz))) (3i)

Each rule provides certainty about the validity of a fraction
of the chain of trust. Rule 1 gives the requirements for the
DS records, while Rule 2 does the same for the DNSKEY set.
Rule 3 states the requirements for all other signatures. This
differentiation allows recovery from an invalid state in a much
more graceful manner, for example by making the distinction
between a problem with the DNSKEY or the signatures.

It could be striking that all three propositions are functions
of the key x, but the state of key x is never explicitly evaluated.
In general the state of a key does not have influence on the
validity of a zone as a whole, as long as there is some other



key that can be used to construct a chain of trust. Of course,
key x can be the same key as y or z. Keys y and z may also
be the same key.

Rule 1 in Equation (3a) simply states that there must be a
DS record published at all times. This needs not be the DS
record of key x, nor have the same cryptographic algorithm
as x. This seems like an incomplete definition but is very
important: Rule 2 does not require a published DS record to
evaluate to true, but the state of the DS is of great influence.
Rule 1 is the guard for having a signed zone. If Rule 1 is not
enforced, the zone could roll to an unsigned situation or to
another key via an unsigned situation.

Rule 2 ensures the DNSKEY set is in a correct state. Only
keys in the propositions are considered with an algorithm equal
to key x. Equation (3b) is the trivial case, there is a key with an
omnipresent DS record and an omnipresent DNSKEY record
(which is signed).

It is also possible, see Equation (3c), that there are two or
more keys with an omnipresent DNSKEY and the DS records
get swapped. These keys must be in a successor relation, either
direct or indirect. A validator is then guaranteed to have at
least one of the DS records available in order to be able to
construct the chain of trust. Similarly, the DNSKEYs can be
swapped if the DS records are omnipresent, Equation (3d).

Equation (3e) is somewhat more complicated and deals with
the unsigned situation. It should be read as: key x may be in
any state as long as all other keys y have their DS hidden
or, when their DS is not hidden, there must be a key z with
its DS in the same state and its DNSKEY omnipresent. Of
course y and z can be the same key. In other words, if a
DS record for this cryptographic algorithm is still available
to some validators, there must be a chain of trust for those
validators. With Equation (3e), multiple DS records can be
withdrawn at the same time.

Rule 3 is very similar to Rule 2 but reasons about the
signatures. Again only keys with the same algorithm as x
are considered. At all times, one of the Equations (3f)–(3i)
should hold. Equation (3f): There is both a DNSKEY and
signatures of one key known to all validators. Equation (3g):
All validators have access to at least one of the DNSKEYs
of keys y to z and all the signatures. A chain of trust can be
build either way. Equation (3h): All validators have access to
one of the signatures of keys y to z and all the DNSKEYs.
Equation (3i): If no DNSKEYs are published, the state of
the signatures is irrelevant. In case a DNSKEY is published
however, there must be a path that can be validated from there.

B. Enforcing Policy

When applying this algorithm on a set of keys, the state
of the records will transit to the key goals as fast as the
validity and timing constraints would allow them. However,
the shortest path is not always desirable. An operator may
choose to trade some speed with bandwidth or the number
of administrative transactions. So far, we have identified three
(partially) conflicting policy strategies:

Minimize the amount of parent interactions
Introducing a new DS record at the parent and
removing an old at the same time. In order to ensure
a chain of trust, the other records of the new key’s
DNSKEY must be omnipresent before doing this.

Minimize the size of the DNSKEY set
As above, but swap the old DNSKEY with the
new DNSKEY. Depending on the type of key, the
DS record and/or the RRSIG records must be in
omnipresent state.

Minimize signatures
Signing all data with multiple keys will increase
bandwidth usage significantly. Signatures can be
swapped in an atomic operation as long as the
DNSKEYs are omnipresent.

To achieve one of these strategies one must effectively hold
back transitions until some requirement is fulfilled. These
requirements are not related to the validity of the zone,
the formal rules would allow the transition. Thus policy is
considered to be extra barriers in the system. In Algorithm 1,
this is handled by the policyApproval function. This distinction
allows us to add future policy demands, without having to
interfere with the timing parameters or the rules on DNSSEC
validation.

V. IMPLEMENTATION

A. OpenDNSSEC

The model and rules proposed in this paper are developed
as part of the OpenDNSSEC project. OpenDNSSEC is a set
of applications that automate DNSSEC signing, key manage-
ment, and distribution of the signed zone. The component
responsible for key management is called the enforcer. As
DNSSEC deployment is still quite recent, new insights and
requirements were added during OpenDNSSEC development,
and some of these additions were hard to incorporate in the
initial design. This led to the development of a new enforcer
and the research described here. At the time of writing, the
software is functional and feature complete but not rigorously
tested and therefore still in alpha stage.

Our implementation stores the policy parameters with which
a key is initially created with the key it self. In effect we can,
next to arbitrary key rollovers, also change policy and timing
parameters without any special treatment.

B. Example of ZSK Double Signature Rollover

The examples in this paper are output traces of our current
implementation. We will take a closer look at one of them,
other examples can be found in the appendix for reference.
Names for the rollover scenarios are taken from “DNSSEC
Key Timing Considerations” [9].

In the example at hand, Table I presents the steps in the
rollover process between two keys. The columns represent
records which are grouped by key. Each row is a time step.
When a record does not change during a step, the record’s
corresponding cell is left blank. Unless stated otherwise, all
keys are of the same cryptographic algorithm.



Without any policy directives, a ZSK Double Signature
rollover will be executed, as this gives the shortest path to
a stable situation.

KSK1 (in) ZSK1 (out) ZSK2 (in) Time
D+ K+ R+ K+ S+ K− S−

K↑ S↑ 0
K↓ S↓ K+ S+ MaxTTL(key, sig)
K− S− MinTTL(key, sig)

Total time: TTL(sig) + TTL(key)

TABLE I
ZSK DOUBLE SIGNATURE ROLLOVER

Let us walk through the example in Table I. We will evaluate
each record from left to right. The KSK is ignored in our
description as there are no changes during the rollover. In this
demonstration, we will assume that the TTLs for all records
are the same.

Since ZSK1 is being replaced, the rollover process tries to
change the records of ZKS1 to the hidden state (−). For the
DNSKEY (K ), this means next state will be unretentive (↓).
Currently all three rules evaluate to true. But if the change is
applied, Rule 3 can no longer be satisfied. Specifically ∃y ∈
X (K+

y S+
y ) would no longer hold. The signatures (S ) of this

key fail to transition for the same reason.
The three rules are also true for the DNSKEY and RRSIG

for ZSK2. ZSK1 and KSK1 form a chain of trust for this
cryptographic algorithm; no change to ZSK2 could break that
chain. After transition of both records, the rules will still hold,
hence both are moved to the next state. Tied to this change of
course, is the actual publication of the records.

After this step, an iteration is made over all records again.
But ZSK1 is still blocked for the same reason. ZSK2 is
blocked by TTL.

The second time step (row 3) will happen as soon as the
records of ZSK2 have been in rumoured state long enough.
These records may transition to omnipresent for the same
reason they could transition to rumoured before. After this (in
the same time step), a chain of trust can be built with KSK1
and ZSK2. Changing the state of the records of ZSK1 does not
influence the validity of the zone any longer, thus both records
may transition to unretentive. From now on these records are
no longer published.

In the last step, after sufficient time has passed, both records
of ZSK1 may enter the hidden state as no validator has this
data in cache anymore.

VI. SUMMARY

Key rollovers in DNSSEC are a complex and error prone
process. In this paper, we have presented a new, cache centric
approach to key rollover that has a number of advantages
over existing common approaches. The new method is flexible
and supports CSK and algorithm rollover, making them no
more exceptional than regular KSK and ZSK rollovers. The
ability to switch between ongoing rollovers makes emergency
rollovers very efficient. The method is also robust, in that it
can recover from an invalid state due to an external event.

The concepts and approach presented in this paper are
also relevant to other implementations, existing or future.
These implementations do not necessarily include the com-
plete mechanism of interdependent state machines and rollover
process, but can also only incorporate the formal rules as a
correctness check in their procedural approach.

We have designed and implemented a prototype of the
cache centric approach to key rollover. The prototype is
functional and feature complete, but still in alpha stage release.
Integration of the prototype with OpenDNSSEC is planned for
the near future.

Other future work is support for key revocation [11] to pro-
vide automated updates of trust anchors. Also, the concept of
standby keys [9] is not incorporated. To assert the correctness
of the formal rules defined in Section IV-A, a formal model
checking model can be used to validate the rules set.
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APPENDIX
ADDITIONAL EXAMPLES OF KEY ROLLOVERS

The examples are presented in tables and describe the
rollover between keys. The columns represent records which
are grouped by key. Each row is a time step. When a record
does not change during a step, the record’s corresponding cell
is left blank. Unless stated otherwise, all keys are of the same
cryptographic algorithm.

In a ZSK Pre-Publication rollover scenario, Table II, the
DNSKEY is introduced while the signatures are held back.
Once the DNSKEY is Omnipresent, the signatures can be
switched. For a while, multiple DNSKEY records are pub-
lished.

KSK1 (in) ZSK1 (out) ZSK2 (in) Time
D+ K+ R+ K+ S+ K− S−

K↑ 0
S↓ K+ S↑ TTL(key)

K↓ S− S+ TTL(sig)
K− TTL(key)

Total time: 2× TTL(key) + TTL(sig)

TABLE II
ZSK PRE-PUBLICATION ROLLOVER

The ZSK Double RRSIG rollover in Table III is similar,
but introduces the signatures first and then switches DNSKEY
records. Typically, the TTL on keys is longer than the TTL
of the zone data, making this rollover somewhat quicker then
the previous. As a drawback, every DNS response contains
the signatures of both keys for a certain period.

KSK1 (in) ZSK1 (out) ZSK2 (in) Time
D+ K+ R+ K+ S+ K− S−

S↑ 0
K↓ K↑ S+ TTL(sig)
K− S↓ K+ TTL(key)

S− TTL(sig)
Total time: 2× TTL(sig) + TTL(key)

TABLE III
ZSK DOUBLE RRSIG ROLLOVER

The KSK Double DS rollover in Table IV is very similar
to the ZSK rollovers we showed. First the new DS record is
introduced so the DNSKEYs can be swapped.

KSK1 (out) KSK2 (in) ZSK1 (in) Time
D+ K+ R+ D− K− R− K+ S+

D↑ 0
K↓ R↓ D+ K↑ R↑ TTL(ds)

D↓ K− R− K+ R+ TTL(key)
D− TTL(ds)
Total time: TTL(key) + 2× TTL(ds)

TABLE IV
KSK DOUBLE DS ROLLOVER

Table V, KSK Double Signature rollover, has the same
effect but now the DS records are swapped. For changing the
DS record, interaction with the parent is needed. This rollover

is especially useful if this is a slow or cumbersome process,
as it needs only one of such interactions.

KSK1 (out) KSK2 (in) ZSK1 (in) Time
D+ K+ R+ D− K− R− K+ S+

K↑ R↑ 0
D↓ D↑ K+ R+ TTL(key)
D− K↓ R↓ D+ TTL(ds)

K− R− TTL(key)
Total time: 2× TTL(key) + TTL(ds)

TABLE V
KSK DOUBLE SIGNATURE ROLLOVER

Our last example, Table VI, shows how the key replacement
process works if we want to rollover to a different crypto-
graphic algorithm and go from a KSK-ZSK split towards a
single type (CSK) signing scheme. Because the keys are using
a different cryptographic algorithm, the order of withdrawing
and introducing records is much more strict. Only when the
new key provides a full chain of trust, the old one is allowed
to be withdrawn.

KSK1 (out) ZSK1 (out) CSK1 (in) Time
D+ K+ R+ K+ S+ D− K− R− S−

S↑ 0
K↑ R↑ S+ TTL(sig)

D↓ D↑ K+ R+ TTL(key)
D− K↓ R↓ K↓ D+ TTL(ds)

K− R− K− S↓ TTL(key)
S− TTL(sig)

Total time: 2× TTL(key) + 2× TTL(sig) + TTL(ds)

TABLE VI
KSK-ZSK SPLIT TO CSK SIGNING SCHEME ALGORITHM ROLLOVER


