
BGP Route Leaks Analysis

Benjamin Wijchers
Faculty of Exact Sciences, department of Computer Science

Vrije Universiteit Amsterdam

December 3, 2014

Supervisors:
Dr. Benno Overeinder (NLnetLabs)

Dr. Paola Grosso (Universiteit van Amsterdam)

Second reader:
Dr. Spyros Voulgaris (Vrije Universiteit Amsterdam)

Abstract

The Internet is a network of networks, where reachability information is
announced between the networks to establish connectivity between them.
The protocol over which this reachability information is distributed, BGP-
4, has several security vulnerabilities. Most of these vulnerabilities will be
covered by the introduction of improvements such as RPKI and BGPsec, but
a partially unsolved vulnerability are so-called route leaks.

A route leak is a violation of the policies between the networks involved.
It occurs when a network B, announces a route learned from network A to
another network C, even though the policies between the three involved net-
works prescribe that this route should not have been send from network B to
C. Non-disclosure agreements about the nature of the relationships between
networks make it hard to distinguish route leaks from regular announcements.

In this project, recent relation inferences from CAIDA have been used to
detect possible route leaks in publicly available BGP data. These potential
route leaks have been further investigated on their duration, the type of vi-
olation, and the type and origin of network that caused the leak-detection.
Most detected possible route leaks had negligible durations. The ones with
a longer life-time mostly involved special relationships between networks not
currently inferred by relationship datasets. Other possible route leaks de-
tected require more information about the networks involved to properly
analyse the situation.

Contents

1 Introduction 4
1.1 Problem Description . 4
1.2 Motivation . 5
1.3 Contribution / Research question 6
1.4 Approach . 7

2 Related Work 8
2.1 Introduction to the Border Gateway Protocol 8
2.2 About the Valley-Free Rule 9

2.2.1 Definition . 9
2.2.2 Reasons for valley free violations 10

2.3 CAIDA’s AS-Rank algorithm 11
2.3.1 Siblings inference . 13

2.4 UCLA’s relation algorithm . 14
2.5 Previous BGP Route Leaks project 15

2.5.1 Mauch . 15
2.5.2 Vouteva and Overeinder 15

2.6 Our Contribution . 15

3 Design 17
3.1 Valley detection algorithm . 18

3.1.1 Siblings . 18
3.1.2 Additional valley attributes 19

3.2 Valley closing algorithm . 19
3.3 Database Design . 20

4 Implementation 24
4.1 Working of the application . 24
4.2 Choice for Relation Data . 25

4.2.1 Differences based on theory 25
4.2.2 Relations files compared 26

1

4.3 BGP Traffic Dumps . 30
4.4 Tools . 31

4.4.1 LibBGPDump . 31
4.4.2 MySQL . 32
4.4.3 Python . 32

4.5 Building the custom relations file 33
4.6 Analysis queries . 34
4.7 Analysis queries . 34

4.7.1 Violation Types . 34
4.7.2 Valley Duration . 35
4.7.3 Open Valleys . 35
4.7.4 AS Triplets Top . 36
4.7.5 Country Leak Top . 36

4.8 The scheduler . 37
4.9 Web based interface . 39

4.9.1 Query server . 39
4.9.2 Statistics . 40

4.10 Validation . 40
4.10.1 Known Limitations . 40

5 Results & Analysis 42
5.1 General Results . 43
5.2 Violation Types . 44
5.3 Valley Duration . 46
5.4 Valleys over time . 47
5.5 Top 10 triplets occurrences . 48

5.5.1 The APAN - WIDE - APNIC valley 50
5.5.2 The aBitCool valley 51
5.5.3 The TNS Plus valleys 52
5.5.4 The Hurricane valleys 53

5.6 Leaks per country . 55

6 Discussion 56

7 Future Work 58
7.1 Utilizing knowledge on complex relationships 58
7.2 Adjust relations manually to decrease number of false positives 59
7.3 Validation with Autonomous Systems 59

8 Conclusion 60

2

A Difficulties experienced 65
A.1 Unique time values . 65
A.2 Inconsistent dump filenames 66
A.3 Irregular file availability times 66
A.4 Python version compatibility 66

A.4.1 Bytes . 67
A.4.2 URLLib . 67

A.5 Database . 68
A.5.1 MongoDB . 68
A.5.2 MySQL . 69

3

Chapter 1

Introduction

People, businesses and countries are dependent on the Internet. The Internet
has shown tremendous scalability, stability and robustness. However, there
are still a number of open scalability and security problems. The Internet is
a network of networks, where direct and indirect connections realize global
reachability. How traffic flows between two or more networks is determined
by the Border Gateway Protocol [36]. BGP is a routing protocol that allows
implicit expression of policies. New enhancements to the protocol are made
to provide security, but not to enforce policies. This thesis studies the policy
violations, how they appear, and what their frequency and impact is amongst
other characteristics.

1.1 Problem Description

Figure 1.1: AS1 announces reachability to destination X, this announcement is
spread by other ASes. AS6 receives two announces to the same destination and
chooses one according to local policy and distributes only this one further.

4

The Border Gateway Protocol is a peer-to-peer protocol used between con-
nected networks to propagate routes between each other. When a network
has received different paths to a single destination, certain route character-
istics will be considered to choose whether or not the newly received route
should be accepted as the new best route to that destination. Depending on
the policy between networks, new routes received should or should not be
announced to certain other networks as well.

A major shortcoming to BGP is its lack of security within the protocol
[28]. A neighbour network can adjust the perceived route characteristics to
make this route seem more optimal to manipulate traffic for that destination
to be re-directed over itself instead of over other networks. The protocol
currently does not provide means to differentiate a correct route from a route
that has been tampered with.

Recently more attention to security and trust has started some work in
the IETF. RPKI[17] and route origin validation are currently being rolled
out, which will allow networks to validate if the destination announced by a
network as belonging within it, does actually belong to that network. An-
other proposed enhancement to the protocol is called BGPsec[18], which
is currently under discussion within the IETF. BGPsec will allow networks
to validate the attribute that indicates which hops the announcement has
already traversed, which can also be manipulated to attempt to create man-
in-the-middle attacks in the original BGP-4 protocol.

However, neither of the proposed enhancements to the protocol will secure
the routing infrastructure against policy violations [24]. This is when network
B announces a route learned from network A to another network C, even
though the policies between the three involved networks prescribe that the
route should not be propagated from B to C. Since network C may not be
aware of the policies between networks A and B, and the announcement is
valid according to BGPsec, RPKI as well as the policy between networks B
and C, network C can still accept the route even though this introduces a
violation according to the policy between networks A and B.

1.2 Motivation

When a policy violation occurs, this will have certain negative influences on
the way traffic is routed. When a network leaks a route unintentionally, this
will usually result in more traffic being routed over the leaking network. Since
the policies with that network do not define that this network should handle
this extra traffic, the network will not get financially compensated to handle
this extra traffic, even though the network itself will need to spend money to

5

handle the traffic, resulting in obviously negative financial consequences for
the leaking network. Since the network usually does not handle the increased
amount of traffic, it is also likely that the hardware installed to handle traffic
is insufficient to cope with the additional data to handle and traffic via that
network will be transferred slower than when larger networks would handle
it.

However, a route leak may be created intentionally as well to intercept
traffic between two networks that are both connected to the malicious net-
work. Since the route announcement will be originated from a non-provider
network, the route will get additional preference over a legitimate provider
route (as providers ask money for transit, while clients pay to do so). Since
traffic now is routed over the malicious network, this network can inspect the
data being transferred between its two neighbours and possibly manipulate
or drop it.

1.3 Contribution / Research question

“Are there ways to measure / determine route leaks in a generic way, can we
analyse the (root) cause of the leak, and can we categorize these incidents in
classes?” is the main question that will be treated in this article. Since there
are multiple reasons why a route leak occurs, one more alarming than the
other, it may be interesting to see if there are means to distinct one type of
route leak from the other. As part of this research question we will attempt
to answer the following sub-questions:

• What part of all routes announced can be considered a route leak?

• How long does it take until the path of the route leaks is withdrawn
from service?

• Is the amount of active route leaks over time growing, shrinking or
staying the same?

• Are certain (groups of) ASes responsible for most of the route leaks or
are they distributed over all ASes?

• Can we determine the causes of the route leaks (e.g. are they intentional
or a misconfiguration)?

6

1.4 Approach

In order to answer these questions several steps have been taken. First,
related work has been looked at to investigate upon previous attempts at
finding route leaks, as well as approaches at finding relationships between
networks, which will be discussed in Chapter 2.

Next, a design was made for an application that will help with the analysis
of this project. This application first gathers publicly available BGP traf-
fic dumps which will be used for analysis. The tool will then automatically
analyse the dump files using an inferred relational database to detect and
store route leaks found in a local database, along with several leak proper-
ties. Furthermore, the application will also be able to query the database to
generate statistics from the information gathered and to visualize the results
to unveil various route leak characteristics.

The design of this application will be discussed in Chapter 3, while the
implementation will be discussed in Chapter 4. Some noticeable recurring
cases have been studied further manually and the results of this further anal-
ysis have been written in Chapter 5.

7

Chapter 2

Related Work

In the past, many route leaks [8, 7, 33, 34, 16, 5] have been discussed. Many of
them could be detected because certain properties of the routes announced
were manipulated such as the prefix origin, which can be detected by the
prefix owner by using services such as BGPMon[43]. However, some of them
[33, 16] do not modify the routing information and still leak the route they
legitimately received. Because of the lack of knowledge of relations between
ASes it has been hard for outsiders to detect the last type of route leaks.
In this chapter various approaches at obtaining this knowledge of relations
between ASes and previous attempts at finding route leaks will be discussed.

2.1 Introduction to the Border Gateway Pro-

tocol

BGP-4 is a peer-to-peer protocol used to propagate routes between different
Autonomous Systems (ASes). An AS is defined as “a connected group of
one or more IP prefixes run by one or more network operators which has a
SINGLE and CLEARLY DEFINED routing policy.” [15] Every AS has its
own unique AS Number registered that is used within BGP to identify the
AS.

When two ASes have established a BGP connection, routes will be shared
using update messages. Update messages announcing a path to a destination
contain one or more Network Layer Reachability Information (NLRI) fields
to define which IP prefixes can be reached using that path and several other
path attributes. One important BGP-4 field is the AS PATH, which contains
an AS SEQUENCE attribute where every AS propagating the update further
prepends it ASN to, making it an ordered list of all ASes traversed. The main
goal of AS PATH attribute is to prevent cycles being formed in a route, but

8

it is also used to determine how many hops there are to reach the destination
propagated. An additional benefit of the AS PATH is that it allows us to
determine what path the announcement to a certain destination has traversed
before arriving at the vantage point for the BGP traffic dumps we will be
investigating.

2.2 About the Valley-Free Rule

The field of inferring relations between ASes was started by Gao [9] in “On
inferring autonomous system relationships in the Internet”. In this article
Gao defined the valley-free rule and relations were derived making use of this
rule. In this section it will be explained what the valley-free rule is and why
it is usually followed. There are however also several reasons why networks
choose to violate the valley free rule, several known reasons to do so will also
be discussed later on.

2.2.1 Definition

According to the valley-free rule, the relation between two different ASes can
either be customer-to-provider, peer-to-peer or sibling-to-sibling. In the case
of a customer-to-provider relation, the client pays the provider to reach parts
of the Internet that are outside of the client’s own clients. When two ASes
establish a peer-to-peer relation, the two ASes agree to provide transit to each
other’s clients free of charge. By doing this, they eliminate the need of both
paying a provider for traffic targeted towards the peer’s clients. A sibling-
to-sibling relation is a special type of relation between two ASes which share
the same organization behind it. Since both ASes have the same owner, they
share all of each other’s routes (contrary to peer-to-peer where only client
routes are shared).

9

AS7

AS4

C2P

AS5P2P AS6

AS9

C2P

AS2

C2P C2P

AS3

C2P C2P

AS8

C2P

AS1

C2P C2P

Provider

Customer

AS7

AS4

C2P

AS5P2P AS6

AS9

C2P

AS2

C2P C2P

AS3

C2P C2P

AS8

C2P

AS1

C2P C2P

Provider

Customer

AS7

AS4

C2P

AS5P2P AS6

AS9

C2P

AS2

C2P C2P

AS3

C2P C2P

AS8

C2P

AS1

C2P C2P

Provider

Customer

AS7

AS4

C2P

AS5P2P AS6

AS9

C2P

AS2

C2P C2P

AS3

C2P C2P

AS8

C2P

AS1

C2P C2P

Provider

Customer

Figure 2.1: Examples of (non) valley-free paths

The valley-free rule states that any AS path announced should start with
any amount of client-to-provider edges, followed by either one or no peer-
to-peer edges, followed by any amount of provider-to-client edges. Sibling-
to-sibling edges may appear anywhere in this rule and thus will not cause a
valley. This rule is usually valid, as any violation of it will result in an AS
paying for the transit of another AS.

2.2.2 Reasons for valley free violations

Giotsas and Zhou [13] mentioned that valley-free violations were formerly
considered to be a mistake which were usually caused by routing configu-
ration errors. They discovered however that up to 50% of the valley-free
violations are actually intentional. They have found that the majority of the
prevalent valley-free violating routes propagated are found to be caused by
research/educational or IXP ASes. The valleys created between research/e-
ducational ASes were found to likely be caused by forms of indirect peering,
where the two ASes want to establish a peer-to-peer relation, but have no
common Point-of-Presence and thus use intermediate ASes between them.

10

Since neither of the ASes is the other’s client and paths will be created both
ways, a valley will occur within those paths. IXP ASes can cause valley-free
violations similarly as they work as a point where indirect peering relations
are also formed. When the IXP AS is then injected between the two peering
ASes a valley is also inevitable for the same reason mentioned before.

Giotsas and Zhou [12] noted that announcements of IPv6 prefixes have
relatively more valley-free violations than IPv4. It is suggested this should be
necessary to be able to maintain global reachability within the IPv6 Internet
as not all ASes currently support this protocol. According to the same article,
some ASes are also found to have different relations for IPv4 and IPv6 traffic.

Several other possible reasons for ASes violating the valley-free rules have
been speculated by Mazloum et al. [23, p. 8]. One of them would be that a
certain AS could have insufficient bandwidth to route traffic over that link
and that therefore a non-valley-free route is preferred over that one. The
same can be done when a route is geographically further away. A reason
why route leaks may be detected incorrectly, mentioned in [23], is that the
relationships inferred by CAIDA[39] are derived with an understanding of
complex/hybrid relationships [20, p. 8], but still output only peer-to-peer and
client-to-peer relations. Thus, if two ASes have a hybrid relation, where in
certain conditions their relation would be peer-to-peer and in other situations
client-to-peer, one of those routes will likely be seen as a valley-free violation.
Mazloum et al. also mention that, although the CAIDA AS relations has
a high accuracy in validated results, there still can be relations that are
incorrectly derived and that are therefore causing wrongly detected valleys.

2.3 CAIDA’s AS-Rank algorithm

In the article “AS Relationships, Customer Cones, and Validation” Luckie
et al. [20] describe the methodology used for the inference of the relation
data used by CAIDA’s AS Relationships Dataset [39]. Contrary to other
approaches, the algorithm used for the CAIDA relationships does not assume
that the AS paths they investigate are valley free. Instead it relies only on
the following three assumptions:

• “there is a clique of large transit providers at the top of the hierarchy;”

• “most customers enter into a transit agreement to be globally reach-
able”

• “cycles of c2p links (e.g., where ASes A, B, and C are inferred to be
customers of B, C, and A respectively) should not exist for routing to
converge”

11

The algorithm uses the paths found in publicly available BGP routing
data and starts by filtering out incorrect AS paths (e.g. containing reserved
AS numbers or cycles). Then ASes are sorted by their transit degree. This
is the number of different ASes from which prefixes are forwarded by an AS
which should be the number of ASes for which that AS provides transit.

Next, the clique of the top of the topology is formed by first taking the 10
biggest ASes according to their transit degree and then determining which
other ASes are connected to all ASes in that clique, but do not receive transit
from them (have paths containing 3 clique members if that AS would be in
the clique).

After the clique is formed triplets of 3 neighbouring ASes in the AS path
are iterated. When the relation between the first two ASes in the triplets is
either P2P or P2C and the relation between the last two ASes in the triplet
was not yet known it will be inferred to P2C as otherwise the middle AS
would be leaking a provider or peer route. Initially only the P2P relations
from the clique will be known, but when a P2C relation is inferred in the
previous iteration step, this will be used in next iterations as well allowing
90% of the relations to be inferred using that step.

After this step additional steps will be made to infer C2P relations from
vantage points inferred to be announcing no provider routes, to infer C2P
relationships for ASes where the customer has a larger transit degree, in-
ferring customers for provider-less (non-clique) ASes and infer stub ASes as
customers of clique ASes.

When all previous steps have been executed, all ASes are traversed once
more to find triplets with two consecutive unknown relationships. For the
first two ASes in the triplet an alternative third AS will be searched which
is a provider of the middle AS. When such a triplet is found, the first AS
in the triplet will be inferred as being a customer of the middle AS as any
other inferred relation results in a route leak in the found triplet. When
this alternative triplet is not found another triplet will be searched where
the first two ASes are in reverse order in the path, with another AS in front
of it with also an unknown relation. If this AS is found the first AS from
the original triplet will be inferred as a customer of the middle AS from the
original triplet.

When all previous steps have been taken any links that have no inferred
relation yet will be assigned a P2P relationship. Because the previous step
attempted to infer relations for two consecutive previously unknown relation-
ships, the amount of consecutive P2P-P2P relations in AS paths should be
minimal.

The algorithm’s accuracy was validated using 34.6% of the data which
showed that 99.6% of the customer-to-provider edges and 98.7% of the peer-

12

to-peer edges were found to be accurate.
The existence of hybrid relations is discussed and techniques are described

to mitigate some of the effects of them for calculating the customer cone
data. However, since the relationships data is used by our application, which
does not differentiate hybrid relations from “normal” relations, this will still
influence our data.

2.3.1 Siblings inference

The inference of siblings relationships was left as future work in the original
article. Later the article Mapping Autonomous Systems to Organizations:
CAIDA’s Inference Methodology [6] was published along with the inferences
of a mapping from AS number to organisation. This data can be used as a
siblings inference as ASes belonging to the same organization are considered
siblings.

The inference of the AS to Organization data uses WHOIS databases
from five Regional Internet Registries and two National Internet Registries
and detects similar entries for different AS numbers to identify them as ASes
from the same organization. The structure of WHOIS databases is undocu-
mented and it varies per database. On top of that, the databases are updated
manually and the data inserted is often outdated or incorrect.

Therefore, the first step in the algorithm is to “prepare the data for uni-
form inter-database analysis”. Here the data is normalized and non-relevant
data is filtered out. The second step is to group data that contains the same
data in various fields (e.g. email, name, etc.). Here, generic values are not
used and the fields being used are tested to result in maximizing the amount
of true positives while minimizing the number of false positives. The final
step is validating the results with ground-truth data for various organizations.

Although the number of false positives produced is arguably significant,
it is unlikely this will pose a problem for the purpose we will be using the
data. For a valley to be incorrectly interpreted as a non-valley because of
the siblings data, the following condition should be met: An AS that leaks a
route should be incorrectly inferred as a sibling with the AS from which the
route is leaked. Therefore the two ASes inferred to be siblings should share
a significant portion of WHOIS data and are neighbour ASes. This scenario
seems unlikely, except for when an organization is split up and did not update
the WHOIS data. Another possible, but even more unlikely, scenario is that
an AS intentionally modified the WHOIS data to resemble the other AS, so
an intentionally formed route leak looks more legit. This would require the
leaker to adjust publicly available information in suspicious ways making the
malicious intentions too obvious.

13

2.4 UCLA’s relation algorithm

Another publicly available AS relations dataset considered for use with this
project is the one from UCLA[44]. In “Quantifying the completeness of the
observed internet AS-level structure” [32] the algorithm which is used to gen-
erate this dataset is described. For this algorithm the following assumptions
are made:

• “the set of Tier-1 ASes are already known”

• “monitors at the top of the routing hierarchy (i.e. Tier-1 monitors) are
able to reveal all the downstream provider-customer connectivity over
time”

• routes follow a no-valley policy

The algorithm starts by assigning a peer-to-peer relation between every Tier-
1 AS. After that, routes received by Tier-1 ASes are used to infer customer-
to-provider relations for other ASes. When an AS is directly followed by
a Tier-1 AS in an AS-Path, the relation can be either P2P or C2P. When
an AS is directly followed by two consecutive Tier-1 ASes in the AS-Path,
the relation between the AS and the Tier-1 AS linked to it will be C2P, as
the link between the Tier-1 ASes was already P2P and Tier-1 ASes have no
providers and having two consecutive P2P relations in an AS-Path forms a
valley. Any AS that occurs further before first AS before the Tier-1 AS is
inferred as a customer of the AS after it because, according to the valley
free rule, the uphill path should only contain customer-to-provider links and
when a Tier-1 AS is in the path, the whole path before it should be the uphill
path. Customer-to-provider links should all automatically be discovered with
this method, as every AS attempting to reach global connectivity should be
connected using provider links to a Tier-1 AS. Peer-to-peer links will not be
discovered with this method, as peers only share client routes and thus a
client route received from a peer should not be send to the provider (or other
peer) and will thus not be seen by a Tier-1 AS. Therefore, every link between
two ASes that does not yet have a customer-to-provider inference will be in-
ferred as being peer-to-peer at the end of the algorithm. The algorithm filters
out routes that had a very short lifetime (less than 2 days) to decrease the
number of incorrect inferences caused by BGP misconfigurations or hijacks.

14

2.5 Previous BGP Route Leaks project

2.5.1 Mauch

The first project known to us that automatically detects BGP route leaks
in publicly available BGP traffic dump files was the project by Mauch [21].
Mauch created a Perl script which is able to identify valley-free violations
within the publicly available traffic dumps and displays them onto the web-
site. The script uses a few ground truth rules and only detects a valley when
3 or more major (Tier-1) networks appear in a single AS path [22]. The ad-
vantage of this method over that of using relations inferred by others is that
those relations can contain a lot of incorrect information, while the small
amount of major networks used, can be checked by a single person. The
disadvantage is that all valley-free violations that do not involve those few
major networks will not be detected. The script will automatically output
the valley paths to his website with the time, prefix announced, AS path and
information about which AS can be contacted or blamed, as well as a score
value which indicates how many major networks were found in the AS path.

2.5.2 Vouteva and Overeinder

The project by Mauch lead to a follow-up project by Vouteva and Overeinder
[41], which our project is loosely based on. This project was able to combine
relation data derived by UCLA [32] with the BGP dump files retrieved from
RIPE[38], Oregon[25] and WIDE[25] to detect valley-free violations. Apart
from filtering the BGP messages with routes containing valleys, no further
analysis on the valley routes is performed. Although our project was origi-
nally based on this project, it was decided not to build further upon the code
from this project as the code was written for a very specific setup. The new
project will be open source and needs to run on multiple setups.

2.6 Our Contribution

This project was originally started using the code from the Vouteva and
Overeinder project. However, since new requirements for the project required
too much of the code to be changed, the code was written from scratch
instead. What has remained from the Vouteva and Overeinder project is the
sources used for the BGP traffic dumps and the method to detect valleys
in them. Also the programming language used (Python) has remained the
same, although it now supports newer versions as well. Also, this project

15

uses the AS relations derived from CAIDA instead of UCLA and it uses
MySQL instead of PostgreSQL. Furthermore, much functionality has been
added that was not available in the project by Vouteva and Overeinder yet.
The most prominent new feature is that our application allows for statistical
analysis on the valleys apart from only detecting and storing valleys. Another
enhancement is that it also detects when valleys stored are withdrawn from
service by another update and stores duration information in the database.
Also more context for the valleys found is stored, such as the ASes who form
the leak and the location (country) of those ASes. On top of that, while the
Vouteva and Overeinder project was built for a specific set-up, this project
uses a more generic approach.

16

Chapter 3

Design

Figure 3.1: Design of the application

Figure 3.1 shows the design of the application. The application will need two
forms of input: the BGP traffic dump data it will analyse and the relation
data containing the relations between different ASes. The BGP Route Leaks
Application will then parse the BGP traffic data using the relations data
and store valleys found in the local database. Also, for every update in the
BGP data, it will be checked if it will withdraw a valley that was previously
added to the local database. The statistics generator will be activated when
a certain range of valleys is added to the database and will query the local
database in various way to generate statistics.

17

3.1 Valley detection algorithm

Figure 3.2: FSM for the valley detection algorithm

The valley detection algorithm is pretty straightforward. As mentioned in
Section 2.2 a valley free path consists of any number of customer-to-provider
(C2P) edges, followed by at most one peer-to-peer (P2P) edge, followed by
any amount of provider-to-customer (P2C) edges. To detect a valley we
therefore read the AS path of an update, reverse it (as the ASes are prepended
to the AS path, the first one sending the message will be the last one in the
sequence) and retrieve for every AS neighbour pair the relation between them.
The list of relations will then be traversed until either a P2P relation, or a
P2C relation is found. After either of these relations is found, the rest of the
list will be traversed until a C2P or a P2P relation is found. If either of these
relations is found, the update will be considered a valley. If the whole list
is traversed before a valley is detected, the update will be considered valley
free. Sibling relations have no effect in any part of the algorithm and when
a relation between two ASes is not known, it will be handled the same way
as a siblings relation.

3.1.1 Siblings

Since the relations file we used is combined with siblings data and we would
like to see the effects of this combination, we have altered this algorithm
slightly. First the relations which were found to be sibling-to-sibling relations
are interpreted as if they were the originally inferred relationship (e.g. C2P,
P2P or P2C). When a valley is found, the list will be parsed again, but now
with the siblings relations ignored. When there is still a valley, the update

18

will be marked as a “real” valley, otherwise the update will be marked as a
“non-real” valley.

3.1.2 Additional valley attributes

The valley detection algorithm we implemented also generates other valley
attributes that are of interest and that are stored in the database. One such
attribute is the violation type which contains the two relations that together
form the valley (e.g. P2P-P2P). This attribute is created by storing the
relation that caused the transition from Uphill path to Downhill path and the
relation that caused the transition from Downhill path to Valley and combine
them. When the relation type appeared to be a siblings relation according to
the algorithm from the previous subsection 3.1.1, this information will also
be included in the violation type without removing the original relation (e.g.
sP2P-P2P indicates a “non-real” valley that is actually S2S-P2P, but had an
initial inference of P2P-P2P).

Another attribute that is inferred by the valley detection algorithm is the
“leak triplet”. The leak triplet contains the three ASes that together form
the valley: the leaked from AS, which is the AS who sends the route to the
leaker, the leak AS who causes the valley and the leaked to AS, to whom the
leak AS sent the route. The leaked from AS is defined at the transition from
Uphill path to Downhill path, while the leak AS and leaked to are set to the
once involved at the transition from Downhill path to Valley.

3.2 Valley closing algorithm

According to the definition in RFC4271[36] there are three methods for an
AS to announce that a previously announced update has been withdrawn
from service:

• “the IP prefix that expresses the destination for a previously adver-
tised route can be advertised in the WITHDRAWN ROUTES field in
the UPDATE message, thus marking the associated route as being no
longer available for use,”

• “a replacement route with the same NLRI can be advertised, or”

• “the BGP speaker connection can be closed, which implicitly removes
all routes the pair of speakers had advertised to each other from ser-
vice.”

19

Therefore, we check for every update announced if there is a not-yet-
closed valley in the database which was previously announced by the same
source IP with the same announced prefix as this new update announces or
withdraws. If this is the case this valley will then be “closed” by this new
update. Also, when a BGP update containing a state change arrives and the
previous state was ESTABLISHED, all valleys created by that source IP will
be closed as well.

However, since our algorithm also changes the AS relation data monthly,
there may be valleys in the database which are not detected as a valley when
the new relation data is used. Therefore, when the AS relation data changes,
all valleys that are in the database that are not yet “closed” will be re-checked
with the new relation data to see if it still contains a valley. If this is not
the case these valleys will be closed with the end time set to the last second
before the beginning of the month were it was not detected as being a valley
anymore.

3.3 Database Design

Figure 3.3: Design of the database

Figure 3.3 shows the design of the database. The main table here is the valley
table, where all valleys found will be stored. The as path table is added to

20

allow lookups in the table for valleys containing a specific AS number in the
path. The as location table is added to allow the leak as to be linked to
a specific country and the country location allows to link that country to a
certain longitude and latitude combination.

From every valley found, the following information will be added to the
valley table in the database:

• Timestamp: The date and time of the valley announcement. As multi-
ple announces are being made at the same second, and it is sometimes
necessary to have knowledge about which happens first, it was decided
to store the date and time in a timestamp field with millisecond accu-
racy.

• From AS : The AS number of the neighbour AS who propagated the
update to the route collector

• From IP : The IP address of that neighbour

• AS Path: The ASPATH attribute of the announcement. The textual
representation of the AS path is stored in the database, to make it possi-
ble to lookup individual ASes that are in that AS path, the as sequence
table is made, containing every combination of the as path attribute
with every asn that is in that as path.

• IPv6 : Indicates whether or not the announcement was for an IPv6
prefix

• Prefix : The prefix announced

• Leak Triplet : The three AS numbers that induce the valley in the path,
consisting of:

– Leak AS : The AS number of the AS who caused the valley within
the AS path. The Leak AS is also a foreign key to the as location
table, so the geographical origin of the leaking AS can also be
queried.

– Leaked From: The AS number of the neighbour of the leak AS
who propagated the route to the Leak AS

– Leaked To: The AS number of the neighbour of the leak AS who
received the route from the Leak AS, although he should not re-
ceive it according to the valley free rule

21

• Violation Type: The combination of the relations between Leaked From
and Leak AS and between Leak AS and Leaked To. There are 4 types
of relation combinations that cause a valley: P2C-C2P, P2C-P2P, P2P-
P2P and P2P-C2P (see Figure 3.4). However, when a valley is reparsed
with the siblings information and deemed not a “real” valley, it will still
be stored, but with the siblings relation noted in the violation type (e.g.
P2P-sP2P is a non-“real” valley).

• Source ID : The source of the route collector, e.g. RIPE. This allows
to generate statistics per source to determine if the (location of) route
collector influences the valleys perceived.

(a) P2C-P2P
(b) P2C-P2P

(c) P2P-P2P

(d) P2P-C2P

Figure 3.4: Violation types

On top of that, if an update withdraws a previously added valley from
service, the End Timestamp will also be set to the time of the update that
closed the valley. Furthermore, the duration will also be set to the difference
between the End Timestamp and the Timestamp values to allow optimization
of queries needing the duration value.

Since the amount of data that will be stored in the database is quite
high and not all of the queries needed to display certain statistics can be
fully indexed, several tables with pre-calculated statistics have been added
as well. This also allows to store statistics for a longer time-period while
older individual valley information is removed from the database to save disk
space.

The tables stats violation types, stats valley duration, stats open valleys,
stats as triplets top and stats country leak top are the statistics tables. These

22

tables will contain statistics for a single day and to get the statistics for a
longer time period the values of multiple days can be summed together. Since
multiple sources for BGP data are used, and sources may be added or re-
moved while there is already data in the database, the statistics are also
calculated for each source separately to avoid inconsistency when the sources
change. Also to allow differentiation of statistics for IPv4 and IPv6, the
statistics are kept separately per IP version as well. The last common field
that all stats tables share is the amount field, which contains the number of
valleys that share the conditions specified by the table and the table-fields.

In the stats violation types table, the amount of valleys detected that had
a specific violation type. Therefore this table has the violation type that is
counted as an extra field. The violation type is an integer that represents a
specific violation type (e.g. 1=P2P-C2P, 2=P2P-P2P, etc.)

The stats valley duration table counts the valleys that had a duration
between a certain range (0-2sec, 2-4sec, 4-8sec, etc.). Therefore this table
has as extra field range index indicating between which range the valleys
were counted.

The stats open valleys table counts the total amount of valleys that have
been announced before 08:00 that day and have not yet been withdrawn by
other updates. Since the table contains counts for only one specific point
of time at any given day, there are no additional fields for this table. The
choice for 08:00 is arbitrary, a certain time had to be chosen. Since it counts
all the updates that were announced before that time and withdrawn from
service after that time and thus mainly counts valleys with longer durations,
it is expected that the exact time chosen should not significantly influence
the statistics.

The stats as triplets top contains the most occurring AS triplets of that
day. Therefore the AS triplet (leak as, leaked from and leaked to fields) have
fields. On top of that the rank (0 is most frequently occurring, higher is less
occurrences) is also stored.

The stats country leak top works similar to the stats as triplets top ta-
ble, but instead of the AS triplet fields it contains the country code field.

23

Chapter 4

Implementation

4.1 Working of the application

When the main application starts, it will look into the database to find the
last valley added for every data source. Then the updates dump file will be
searched that contained this valley, which will be the first file to be parsed to
look for valleys, to see if the program was previously shut down while in the
middle of the process of adding valleys (to prevent inconsistency by missed
valleys). The parsing of an updates dump file goes as follows:

• If the relation file is not initialized yet, or a new custom relations file
needs to be selected (e.g. update is in new month), the relation file will
be initialized in accordance to Section 4.5.

• If the updates file is not yet downloaded it will be downloaded from
the server.

• The updates files are in MRT format [4] and will thus first be decoded
using the libbgpdump library described in Section 4.4.1.

• For every update in the updates file it will be checked if it is a state-
change, an update or something else:

– If the update is a state-change and the previous state was an
established connection, all valleys created by that neighbour will
be withdrawn from service.

– If the update is of type update, the relations file will be used to
parse the AS path using the algorithm described in Section 3.1.
If a valley is detected it will be added to the database.

24

– On top of that the update will also be used to detect if it withdraws
a currently actively used valley from service using the algorithm
described in Section 3.2.

• The next updates file to be parsed will be selected using the scheduler
algorithm as described in Section 4.8 and will then be parsed in the
same way.

When all files currently available on the server have been parsed the appli-
cation will start waiting regular intervals for new updates data to arrive on
the server and will parse them when they come available.

4.2 Choice for Relation Data

As the relationships between ASes are usually under a non-disclosure policy
and we need to know these relations to detect the valleys in the public data,
an inferred AS relationships dataset is required. As mentioned in Chapter
2 there have been multiple approaches at inferring relations between ASes,
such as Gao [9], Luckie et al. [20] and Oliveira, Willinger, Zhang, et al. [32].
The datasets from the last two are both publicly available for use. Therefore
these datasets have been compared to find out which dataset would be best
suited for this project. This is done both based on the theory behind them
as well as on differences in stability of the actual result.

4.2.1 Differences based on theory

Both CAIDA and UCLA share a lot of similarities in the inference method
used; Both make use of publicly available BGP data resources, both make
use of the fact that there is a clique at the top of ASes that have no provider
themselves and both use this clique to infer customer-to-provider relations
for non-clique members.

However, there are also a lot of differences between the two relation infer-
ence methods. While UCLA predefines the clique at the top of the topology
by manually providing the AS numbers of Tier-1 ASes, CAIDA’s approach
uses an inference algorithm to automatically establish the set of ASes belong-
ing to the clique. While the UCLA methodology is not prone to errors in the
inference of the clique, it does make the assumption that the defined Tier-1
ASes is in fact the same as the top clique, while the CAIDA article argues
that “Tier-1 status is a financial circumstance, reflecting lack of settlement
payments” and that they “focus on identifying transit-free rather than Tier-1
ASes”.

25

Another difference is that where UCLA explicitly makes inference choices
based on the assumption that AS paths should be valley free, CAIDA notes
that assuming an AS path is valley-free is not always valid and that their
algorithm therefore does not make that assumption. As our application at-
tempts to detect AS paths that violate the valley free property, using an
algorithm that relies on the assumption that those paths do not exist would
not be very effective.

Also 34.6% of the relations inferred by CAIDA have been validated which
have shown that 99.6% of the customer-to-provider relations and 98.7% of
the peer-to-peer relations were accurate. According to their article this was
“the largest source of validation data for AS-relationship inferences to date”.
The document containing the algorithm used by UCLA does not mention
validation of the data. This makes it hard to assess the correctness of the
UCLA inferences.

4.2.2 Relations files compared

Relations between ASes can change over time. ASes can make new peering
agreements, or acquire or be acquired by other organizations to become part
of a bigger AS which may alter relations between the other ASes. It is
therefore to be expected that the relations inferred may change slightly over
various months, while most of it should remain stable.

We have compared for the UCLA and CAIDA data what the differences
are between the two sources for the same month, as well as what the differ-
ences are between the data from the same source, but between each month
and the month before it.

Conflicts between CAIDA and UCLA from the same month

Conflicts

Agreements

Missing.CAIDA

Missing.UCLA

2013-05
2013-07

2013-08
2013-09

2013-10
2013-11

2014-04
2014-06

2014-07
2014-08

2014-09
0

25.000

50.000

75.000

100.000

Month

Figure 4.1: Relations for UCLA and CAIDA compared for the same months

26

Figure 4.1 shows for the months for which both sources had relations
data, how many of those relations where equal in both sources (agreements),
which ones had a different relation in one source than the other (conflicts)
and which ones are unknown in one of the two files (missing).

It can be seen that although the large majority of relations are agreed
upon between CAIDA and UCLA, there is also a significant amount of ASes
between which CAIDA has inferred a different relation than UCLA. On top
of that there are also a few relations that have been inferred by UCLA, but
not by CAIDA, but the amount of relations inferred by CAIDA, but not by
UCLA is larger. Although apparently CAIDA has inferred more relationships
than UCLA, it is not certain if these relations are correct, so a qualitative
judgement can not be applied. For the conflicts however, it is certain that
either UCLA or CAIDA has inferred the relation incorrectly, so these are
certain reason for concern. However, again it can not be determined which
one of the inferences is correct.

27

Comparison between CAIDA relation data between current and previous month

Conflicts

Agreements

Missing.Previous
Month

Missing.Current
Month

2013-01.-.2
013-02

2013-02.-.2
013-03

2013-03.-.2
013-04

2013-04.-.2
013-05

2013-05.-.2
013-06

2013-06.-.2
013-07

2013-07.-.2
013-08

2013-08.-.2
013-09

2013-09.-.2
013-10

2013-10.-.2
013-11

2014-06.-.2
014-07

2014-07.-.2
014-08

2014-08.-.2
014-09

0

50.000

100.000

150.000

200.000

Month

(a) CAIDA
Comparison between UCLA relation data between current and previous month

Conflicts

Agreements

Missing.Previous
Month

Missing.Current
Month

2013-07.-.2
013-08

2013-08.-.2
013-09

2013-09.-.2
013-10

2013-10.-.2
013-11

2013-11.-.2
013-12

2014-01.-.2
014-02

2014-02.-.2
014-03

2014-03.-.2
014-04

2014-04.-.2
014-05

2014-05.-.2
014-06

2014-06.-.2
014-07

2014-07.-.2
014-08

2014-08.-.2
014-09

2014-09.-.2
014-10

0

40.000

80.000

120.000

160.000

Month

(b) UCLA

Figure 4.2: Comparison between relation data between current month and
previous month

Figure 4.2 shows how much of the relation data changes each subsequent
month for the same source.

The CAIDA graph shows a minor amount of changed relations each month
and a few relations that have been newly inferred or are removed from a
subsequent month. The vast majority of relations however remains consistent
between months, which is to be expected.

The UCLA graph however, has various months in which not a single
inferred relation has changed, but when there are changed relationships, the
amount of conflicts between the previous months are much higher compared
to CAIDA. It is highly unlikely that not a single relationship is changed for
several months, while a significant proportion of the relationships changes

28

the next months. It is also found that some of the files with 100% agreement
rate files are exactly the same in content, while others have only a variation
in the relations inferred to be unknown (a inference type that is left out in
the CAIDA data).

The relations inferred by CAIDA, although they vary a little every month
seem therefore more stable than the relations inferred by UCLA, who either
vary nothing at all or a great deal between subsequent months.

29

4.3 BGP Traffic Dumps

(a) RIPE RRC00 (located in Europe)

(b) RouteViews WIDE
(located in Japan)

(c) RouteViews Oregon (located in the United States)

Figure 4.3: Route collectors and their peers

Besides choosing the relations between ASes, choices should also be made on
which data to find valleys in. To maximize the amount of valleys the program
will be able to detect the traffic dumps from various route collectors, receiving

30

updates originating from different locations in the world have been used. For
this project we use BGP updates from 3 different sources: from RIPE we
use the remote route collector 00 and from RouteViews we use the route
collectors Oregon and WIDE.

RIPE RRC00 is a multi-hop route collector which receives updates from
various peer ASes. The collector itself is located in the Netherlands and most
of its peers come from Europe. However, it also has many big peers coming
from other parts of the world such as the Tier-1 ASes Level 3 Communi-
cations, inc. and AT&T from the United States, as well as two ASes from
Asia Pacific Network Information Centre (APNIC) located in Australia and
Japan.

In order to receive more updates from the United States, which we may
not see from the RIPE remote route collector due to peering relations in
the US, we also added a multi-hop route collector located within the United
States. RouteViews Oregon logs the updates received at the Internet Ex-
change at the University of Oregon. The majority of peers from which the
collector receives routes are located in the United States, but there are also
some ASes from other parts of the world. Both RIPE RRC00 and Route-
Views Oregon have an AS from Level-3 Communications, but not with the
same AS number (respectively AS3549 and AS3356).

To receive updates from eastern countries we added a route collector
from Japan. RouteViews WIDE is a non-multi-hop route collector which
collects only routes received by ASes from the Widely Integrated Distributed
Environment project. However, since those WIDE ASes all have other peers
from which they receive routes, the routes the WIDE ASes receive will contain
various routes not seen by the other route collectors.

4.4 Tools

4.4.1 LibBGPDump

There are several applications / libraries available to parse MRT files. The
RIS Raw Data website[38] suggests to use libbgpdump[2] (C) or PyBGP-
Dump[30] (Python), but a Perl implementation [37] exists as well. Since our
project is written in Python, PyBGPDump seemed to be the most logical
choice. However, this program was unable to parse any of the recent MRT
dump files. The cause of this problem seems to be that the library is unable
to support the encoding of 32 bit AS numbers as defined in RFC6793[40],
which is the common way AS numbers are represented nowadays. After a
patch [31] and some manual adjustments the PyBGPDump can work on more

31

recent files in Python 2.7. As PyBGPdump did not work without the user
needing to apply unofficial patches it was first decided to use libbgpdump
instead. However libbgpdump also has several disadvantages. First of all
it is not native Python and we thus need to execute the application, grab
the output and reinterpret it again which results in lesser performance. On
top of that since it is a C file it needs to be compiled differently depending
on the OS it runs on which would make the whole project less portable.
Also when parsing some dump files the program would raise a segmentation
fault during execution, which could indicate a potential security issue in the
application [3]. Because of the crashes the code also needs to handle more
exceptional cases and will miss the possible updates that where within the
files that made the program crash, making the end results less reliable. In
the end it was decided to take a pure Python approach for the project. In
order to remain support for Python 3.x a custom BGP MRT parser module
was built, instead of using the patched PyBGPDump library.

4.4.2 MySQL

We use MySQL to store the valleys found in a database. Originally other
database types were used (see Appendix A.5), but because of issues with
the scalability MySQL is chosen. However, most of the reasons that MySQL
was chosen are irrelevant for the current implementation of the application.
The original reason to use MySQL in favour of other databases was the
support for spatial indexes. For querying the total amount of open valleys at
a specific point of time t, we need to find valleys in the database that have
a time lower than t, but an end-time higher than t. However, regular binary
tree indexes will create a sorting of either time or end-time, but not both.
Using spatial indexes solved this scalability issue, but significantly slowed
down the procedure of inserting valleys, making the main program to slow.
We decided that instead of creating statistics after collecting a lot of data,
statistics would be generated on daily bases and the results of multiple days
would be combined to calculate the monthly statistics. This way smaller
parts of the database are used and when the statistics for a month need to
be calculated, only the already present results need to be added up.

4.4.3 Python

The application is written in the Python language. Python comes pre-
installed with many Linux distributions, which makes the application easy
to install for those systems. The language is also quite easy to learn, which
makes it easier for other people to make adjustments to the code when the

32

application becomes open source. Since Python 2.x is currently the most
commonly pre-installed version of Python in Linux distributions, but Python
3.x is expected to take this place somewhere in the future, it was decided to
support both versions of Python.

4.5 Building the custom relations file

To find valleys the application needs to know the relations between the dif-
ferent ASes. Instead of using a publicly available AS relation data file as is,
we decided to modify one to add awareness of siblings relation to one that
originally only defines provider-to-customer and peer-to-peer edges. On top
of that, the data source we use [39] does not provide relation data for some of
the months we cover. Therefore a method has been created to build a custom
relation data file for every month for when that month is not available and
to add siblings information to the months of which data is available.

Figure 4.4: Diagram displaying how the relation/siblings data file used is
chosen

Figure 4.4 displays how the application chooses which relation data /
siblings data file it will use. The same steps will be checked for both relation
and siblings data. However, the combining procedure is different.

For the relation data, a combined data set consists of only the relations
that are inferred in both datasets to the same relationship. So every relation

33

that was not inferred in either of the datasets and every relation that has
changed between any of the datasets will be removed. This should reduce
the amount of false positives. If a relation has changed somewhere within
the missing months, it is not possible to determine when exactly this change
occurred. Since the changed relation is removed from the dataset, the relation
will no longer cause valleys to be detected.

For the siblings data, a combined data set consists of all siblings that
appear in either of the two datasets. As the siblings data is used to reduce
the amount of false positives by labelling detected valleys that are not really
valleys when the siblings data is used, a combined dataset would label more
valleys to be non-real valleys and thus further reduce the amount of false
positives in the real valleys data. Since we do not know when the ASes
that were not siblings in one dataset became siblings in the other dataset we
therefore join all siblings from both datasets that surround the month that
will be parsed.

4.6 Analysis queries

4.7 Analysis queries

After parsing all the updates for a certain day for a specific source, queries
are performed to fill the statistics tables in the database and their results are
stored in the appropriate tables. As seen in 3.3 there are 5 different stats
tables which will be filled using the results of different queries. Every one of
those tables will get filled with data per source and per IP version.

4.7.1 Violation Types

For the stats violation types table, the following query will be performed for
every violation type:

SELECT COUNT(∗)
FROM v a l l e y WHERE
v i o l a t i o n t y p e = %s AND
timestamp BETWEEN %s AND %s AND
s o u r c e i d = %s AND
ipv6 = %s ;

With as the first argument the violation type that is currently queried, the
second and third arguments the first and last millisecond of the day for which
statistics are being made and the last two arguments the source and whether

34

or not IPv6 statistics are being made. This query will simple count all valleys
found that had the specific violation type on a single day for the specified
source/IP version combination.

4.7.2 Valley Duration

For the stats valley duration table a similar query is performed:

SELECT COUNT(∗)
FROM v a l l e y WHERE
durat ion BETWEEN %s AND %s AND
v i o l a t i o n t y p e IN (1 , 2 , 4 , 8) AND
timestamp BETWEEN %s AND %s AND
s o u r c e i d = %s AND
ipv6 = %s ;

The query only counts violation types of 1, 2, 4 and 8 which are real relation
types P2P-C2P, P2P-P2P, P2C-C2P and P2C-P2P and not the other rela-
tions which have been inferred as being siblings. In the query the duration
should be between two values determined by the duration index. The dura-
tion ranges we check increase in range exponentially and follow the pattern
<= 2, 3 − 4, 5 − 8, ... >= 524289. The last one also includes duration
values that have not been set yet and thus instead of the normal duration
BETWEEN part it will have:

durat ion >= 524289 OR durat ion IS NULL

Since the duration may be NULL for valleys that will eventually be closed
earlier than after 6 days and thus are incorrectly inferred as having a duration
of over 6 days, this query will be performed after 7 days as well and will
overwrite the previous values.

4.7.3 Open Valleys

For the stats open valleys table the following query is performed:

SELECT COUNT(∗)
FROM v a l l e y WHERE
timestamp >= %s AND
end timestamp <= %s AND
v i o l a t i o n t y p e IN (1 , 2 , 4 , 8) AND
s o u r c e i d = %s AND
ipv6 = %s ;

35

Here both the values for timestamp and end timestamp will be set to the
day being looked at at 08:00 (arbitrary value). This will count all open “real”
valleys that have been announced before the specific time, while they were
not withdrawn before that time.

4.7.4 AS Triplets Top

The queries for the stats as triplets top table work somewhat different than
the previous ones. Here we group the data per triplet (leak as, leaked from
and leaked to), select only the valleys with a duration of more than a minute
and order by the amount of occurrences. Since we do not have infinite space,
we limit the amount of results to contain only the 100 most occurring triplets
that meet the constraints.

SELECT leak as , leaked from , l eaked to ,
COUNT(∗) as amount
FROM v a l l e y WHERE
durat ion >= 60 AND
v i o l a t i o n t y p e IN (1 , 2 , 4 , 8) AND
s o u r c e i d = %s AND
ipv6 = %s
ORDER BY amount DESC
GROUP BY leak as , leaked from , l e a k e d t o
LIMIT 100 ;

4.7.5 Country Leak Top

The queries for the stats country leak top table work similar to the ones
from AS Triplets Top, but with instead of the fields from the leak triplet, the
country code will be grouped by. Since the country code is not part of the
valley table, the as location table needs to be joined to it first.

SELECT country code , COUNT(∗) as amount
FROM v a l l e y
JOIN a s l o c a t i o n ON v a l l e y . l e a k a s = a s l o c a t i o n . asn
WHERE durat ion >= 60 AND
v i o l a t i o n t y p e IN (1 , 2 , 4 , 8) AND
s o u r c e i d = %s AND
ipv6 = %s
ORDER BY amount DESC
GROUP BY country code

36

LIMIT 100 ;

Before this query is performed it is made sure that all leaking ASes of that day
have a Country Code added to the as location database to prevent certain
leaking ASes to have no matching Country Code.

4.8 The scheduler

The system that decides which file containing updates should be parsed next
and when is a complex system because it tries to meet many requirements.
The requirements that have been considered while making the scheduler are
as follow:

• There should never be any updates file skipped, because when any
update is not parsed, a valley or the closure of a valley may be missed.
Therefore, when the application reboots, the last valley parsed will be
re-parsed again to see if all updates were already handled. After that
always a new updates file will be selected which directly follows the
previous one found.

• It should support different sources for updates files and it should regu-
larly switch from which source it returns a updates file to parse, so no
source gets behind schedule.

• The file name of the next file containing updates should be determined
automatically. Usually the file times are predictable (e.g. 5 or 15
minutes between them), however it should also correctly determine the
file names that stray of from the default pattern.

• When files are already downloaded before, it should use those files and
don’t re-download them.

• When files are not downloaded yet, it should download them from the
source, but not too much at the same time to prevent the server from
being overloaded with requests.

• When a updates file cannot be downloaded, the reason should be traced
and correct actions should be performed:

– When the server does not respond, an appropriate delay should be
used before retrying. This delay should increase with every failed
attempt and decrease when a file is successfully downloaded.

37

– When the server does respond, but the file is unavailable, while
other files uploaded later are available, the file name will not have
followed the regular pattern and the alternative file name should
be found.

– When the server does response, but the file is unavailable, and
there are no later files available as well, the application should
wait until the file is uploaded. After this event, all subsequent
files will need to be uploaded too, so the system should wait be-
fore attempting to download subsequent files as well. This delay
is usually the same as the differences between two subsequent file
times, but occasionally also differs a lot which should also be han-
dled correctly.

Figure 4.5: Diagram displaying how the updates time to parse is chosen

Figure 4.5 shows how the file to be parsed next will be selected. The same
procedure is followed for every source and the one with either the lowest file
time that will be downloaded next, or the source for which the ETA until
the next file is available will be chosen next.

The first file to be parsed will be the file containing the last valley available
in the database. This valley will be re-parsed to check if all valleys available
in that file had been added to the database the last time the program was
executed.

After the first file has been parsed, the index page for the same month
will be downloaded or loaded from cache and the files found after the first file
will be parsed in the correct order. If the month contains all updates files it
will ever contain, the next month will be downloaded as well and all updates
from that month will be parsed, which will be repeated until the last update
from the current month is parsed.

38

When the last updates file available on the current month page, at the
time that that page was downloaded, has been parsed the consecutive file-
names will be “guessed” by adding the usual difference between the last file
times (usually 5 or 15 minutes) to the last file parsed. While the filename is
correctly guessed (and thus exists), the next filename guessing will continue.
When the filename does not exist however, the month page index will be
downloaded once more to see if the last file parsed was indeed the last one
currently available.

When this is the case, the next file will be guessed again, but it will be
downloaded only after a certain interval (the same as the time difference),
as the server will only upload new files every so many minutes. When a
guessed filetime is wrong multiple times in a row, the month page will be
re-downloaded again to prevent the program lock up due to misnamed files.

This approach will not make too many more requests then strictly nec-
essary, while still downloading the latest updates files close to as soon as
possible. There are more delays not described in this figure to handle server
timeouts, while parsing files according to the month page for example, that
further reduce the stress put on the servers, but those have been left undis-
cussed to reduce the complexity a little.

4.9 Web based interface

Apart from the main statistics presented in this paper, we also created a web
based interface for users to view the data derived by the project’s application.
The web interface contains two parts: the query part and the statistics part.
The query part allows users to find in the database route leaks that fulfil
certain conditions (e.g. is a certain AS number causing a route leak). The
statistics part allows the user to view certain statistics such as the ones
presented in this document. In this section it will be described how the web
based interface works and how it gets the information from the database.

4.9.1 Query server

Apart from the main application, another application will be running on
the server which is the Query Server. This Python script waits for incoming
HTTP requests and responds in JSON format. A request will be in the format
of GET /valleys/{key1}/{value1}/{value2}/{key2}/{value3}/...etc. Where
if multiple values are given for a single key, it will be either interpreted as a
OR clause or a BETWEEN clause depending on the key. The response will
be a JSON document containing a list of the found route leak updates with

39

their information. To prevent SQL injections from occurring, none of the
keys or values will be directly used in the SQL query. Numbers will be pre-
casted to integers, IPs and prefixes will be pre-converted to their binary form
and the source will only allow values that are defined in the configuration
file. To reduce the impact of later adjustments to the source that possibly
introduce SQL injections from occurring, the Query Server also runs on a
different MySQL user than the main program, which only has read access to
the database.

4.9.2 Statistics

As written in Chapter 3, the main application also frequently generates statis-
tics which it records in the statistics database. The Query Server also accepts
requests in the format “GET /statistics/day between/{day from}/{day to}”.
The response will again be a JSON document with the values needed to pro-
duce certain graphs. To produce the graphs the website will use Google
Charts [14]. Google Charts was chosen over alternative solutions because
it provides a single method to visualize the various charts (e.g. pie chart,
bar chart, but also geo chart) we wanted to use. On top of that it was rel-
atively simple to use while it still has various advanced options to make it
customizable enough for our needs.

4.10 Validation

4.10.1 Known Limitations

There are several limitations with the approach we are using. In this section
we will be discussing what limitations are known and what is done to reduce
the effects of it.

Relying on AS relations

First of all, the project heavily depends on the relationships between neigh-
bouring ASes. Since the actual relations between ASes are not known, in-
ferred data sets are used. To minimize the amount of false positives we have
chosen the most reliable AS relationships data set we could find (as moti-
vated in Section 4.2) and combined them with siblings inferences to reduce
the amount even further (as described in Section 4.5). However, it is still
possible that some AS relations have been inferred incorrectly and this will
result in some valley detections where there are none.

40

Apart from the possibly wrongly inferred relations, the relational data
also contains only one relation for every AS pair. As we have seen in Sec-
tion 2.2.2, there are ASes that have different relations based on the IP pro-
tocol version being used. Since we do not have separate relations data for
the different IP versions, we will not be able to distinguish an alternative
relation for a given protocol from a violation in the policy. Therefore if the
relation between two ASes is different for IPv4 and IPv6 and the relation
data contains only the relation inferred for IPv4, updates for IPv6 will likely
be incorrectly parsed as being a valley.

Spurious routes

According to Luckie [19] the AS path attributes in the public BGP data
cannot always be relied upon. Since there is currently no mechanism in BGP
to prevent the AS path being manipulated differently from the specification
(prepend your AS number at each external forward) any AS in the path can
choose to manipulate the AS path.

If, for example, AS1 does not want AS2 to take the path he received
from AS3, AS1 may prepend AS2’s number as well before announcing it
to its neighbours. This way when AS2 receives this route later on its loop
prevention algorithm will prevent this path from being used. However, this
will also affect the AS path received at a vantage point as this will also receive
the route which has been tampered with. Therefore we will interpret it as
that AS3 has send the path to AS2, who send the path to AS1, even though
the path was send from AS3 to AS1 and AS2 was never in between this path.

Luckie has defined a method to identify some of the spurious routes by
utilizing and combining data from various vantage points. Implementing this
method however would take too much work for the scope of this project and
would heavily increase the computational complexity of the project’s appli-
cation. The expected amount of spurious routes is not deemed significant
enough to have a noticeable effect on the project’s statistics. Furthermore
BGPsec[18] will eventually secure the AS path attribute, making it impossi-
ble for ASes to create such spurious routes between ASes which have BGPsec
implemented.

41

Chapter 5

Results & Analysis

We decided to focus our analysis efforts on the following aspects:

• Violation Types ; This shows whether or not certain combinations of
relations causing a valley are more frequently occurring than others.
On top of that, we also left in this chart the valleys that were actually
caused by siblings relations, so the effect of using siblings data can be
looked upon as well.

• Valley Durations ; This graph provides means to see how long it takes
until a route becomes unavailable to use. This way it can be seen if
route leaks are quickly being fixed or that they keep active over a longer
time span.

• Open valleys per day ; This graph shows the total amount of active
valleys at a certain point of time every day. This way it can be seen if
the amount of route leaks is growing, shrinking or remaining consistent
over time.

• Top 10 triplets ; This chart views the most frequently occurring AS leak
triplets (as defined in Section 3.1.2). These triplets have been further
investigated to see if we can determine something about whether or
not the most frequently occurring valleys found are intentional (docu-
mented) or not.

• IP versions ; According to Giotsas and Zhou [12] valley paths occur
relatively more frequent in routes for IPv6 prefixes than they do for
IPv4 addresses. To see if we can confirm or disprove this statement,
statistics are also created specifically for the different protocols.

42

• Regionality ; Different countries have different policies on how their in-
habitants can reach certain parts of the web. Occasionally to block
certain websites BGP is used [5]. It may be interesting to see if we can
detect whether or not certain regions of the world that have a stricter
control over their population also are responsible for a larger amount
of route leaks.

5.1 General Results

(a) IPv4 counts

Source Updates Valleys %

RIPE 443034456 18778363 4.24%
Oregon 1043108312 32179313 3.08%
WIDE 24441242 1126113 4.61%

All 1510584010 52083789 3.45%

(b) IPv6 counts

Source Updates Valleys %

RIPE 40987405 9322831 22.75%
Oregon 38272251 4040745 10.56%
WIDE 3145674 762861 24.25%
All 82405330 14126437 17.14%

Figure 5.1: Total number of updates and valleys per source and IP version

Figure 5.1 shows the number of updates counted in all the updates files in
the range of data we examined, along with the amount of valleys that were
detected in those updates for the sources used for IPv4 and IPv6. The number
of valleys displayed here still include the valleys that were later filtered out
as they were determined to contain a siblings relation.

The results show that the amount of valleys detected in IPv6 relative
to the amount of updates is much larger than in IPv4. In Section 2.2.2
there were two possible explanations for the difference in results for IPv4
and IPv6 data. Giotsas and Zhou [12] mentioned that the IPv6 protocol is
not yet implemented by enough ASes to allow for global reachability without
creating valleys and that thus valley paths will be accepted as well.

However, they also noticed that there are ASes which have different rela-
tionships based on the protocol used. Since we only have one relation inferred
for every AS combination and IPv4 has significantly more updates than IPv6,
it is likely that the inferred relation applies to IPv4. When the IPv4 relation
is then used to find valleys for IPv6 prefixes, this will result in false positives
when the IPv4 and IPv6 relations are not the same.

43

5.2 Violation Types

Violation Type Distribution

P2P-C2P

P2P-P2P

P2C-C2P

P2C-P2P

sP2P-C2P

sP2C-C2P

sP2P-sC2P

sP2C-sC2P

Other

20.4%7.9%

8.6%

20.5%
34.4%

Figure 5.2: Violation Types (of valleys found between 2014-04-12 and 2014-06-12)

Figure 5.2 shows the distribution of violation types of all valleys found be-
tween 2014-04-12 and 2014-06-12 in all of the BGP traffic sources for all IP
versions. Since we added the siblings inference later on in the project, we
also divided the route leaks that turned out to be siblings relations from the
real route leaks. Here we see that about 16% of the valley free violations were
later found to be caused by siblings relations inferred as different relations.
In the other graphs only “real” valleys will be handled.

From the “real” violation types, the P2P-P2P violation appears to be
the most prominent. The frequency of this type of violations can be caused
by various reasons: As discussed earlier in Section 2.2.2 ASes can perform
indirect peering at an IXP and sometimes these IXP ASes are not removed
from the AS path. It may also be possible that ASes have complex policies
that require them to share peer routes with other peers. In this case one AS
will provide transit between those two peers’ client routes and may be com-
pensated for doing so. However, this is purely an hypothetical explanation
as we have no confirmation of the existence of such policies between ASes.

44

Violation Type Distribution

P2P-C2P

P2P-P2P

P2C-C2P

P2C-P2P

sP2P-C2P

sP2C-C2P

sP2P-sC2P

sP2C-sC2P

Other

17.7%
6%

11.7%

14%

44.7%

(a) RIPE

Violation Type Distribution

P2P-C2P

P2P-P2P

P2C-C2P

P2C-P2P

sP2P-C2P

sP2C-C2P

sP2P-sC2P

sP2C-sC2P

Other

22.8%

26.8%

8.4%

9.4%

25.6%

(b) Oregon

Violation Type Distribution

P2P-C2P

P2P-P2P

P2C-C2P

P2C-P2P

sP2P-C2P

sP2C-C2P

sP2P-sC2P

sP2C-sC2P

Other

13%

26.8%

7.8%

32.1%

16.6%

(c) WIDE

Figure 5.3: Violation types per source

In Figure 5.3 charts have been made for the same period, but now the dis-
tribution is charted per source for BGP data. The RIPE chart (Figure 5.3a)
has a lot of similarities to the overall chart (Figure 5.2), but there are some
differences. The most noticeable change is that the P2P-P2P violation type
is even more dominant (44.7% v.s. 34.4%).

In the Oregon chart, the P2P-P2P violation type still has the biggest
share (26.8%), but the P2P-C2P and P2C-C2P violation are almost equally
distributed (22.8% and 25.6% respectively). This seems to indicate that the
valley free violations seen by one route collector can differ significantly to the
ones seen by a route collector located elsewhere.

In the WIDE chart, the P2C-P2P, which is the smallest “real” violation
type in the other charts, is the most prominent violation type (32.1%). A
likely cause of this effect is that the direct peers of RouteViews WIDE (Fig-
ure 4.3b) are part of the WIDE project[35], which is a research institution.
As previously discussed in Section 2.2.2 research and educational ASes are
responsible for a significant amount of prevalent valley-free violating routes
that are propagated. As will be seen in Section 5.5 this indeed seems to be the
case as the most frequently occurring route leaks involve a WIDE AS and one
or more other research/educational ASes. As most of the other research/edu-
cational ASes are inferred to have a peering relation with the WIDE project,
and the routes they share are mostly inferred as being provider routes, these
valley-free violations are overrepresented in this chart.

45

Violation Type Distribution

P2P-C2P

P2P-P2P

P2C-C2P

P2C-P2P

sP2P-C2P

sP2C-C2P

sP2P-sC2P

sP2C-sC2P

Other

24.3%

24%

8.5%

10%

6.3%

24.9%

(a) IPv4

Violation Type Distribution

P2P-C2P

P2P-P2P

P2C-C2P

P2C-P2P

sP2C-sP2P

Other

17%

72.9%

(b) IPv6

Figure 5.4: Violation types per IP version

Figure 5.4 shows the charts for distribution of violation types for IPv4
and IPv6 prefixes. The IPv4 chart mostly resembles the original Figure 5.2.
However it can be seen that the P2P-P2P violation type has been reduced
by about 10%, which is now distributed over certain other violation types.

Figure 5.4b explains the difference in P2P-P2P violations percentages, as
in IPv6 this violation type is massively overrepresented. The huge amount
of P2P-P2P violations for IPv6 prefixes is mainly caused by a single AS
which will be seen in Section 5.5. Since this AS causes more than 70% of all
valleys found in IPv6 prefix announcements and the majority of its detected
valley free violation are of type P2P-P2P, this should explain the P2P-P2P
violation type being significantly larger in the IPv6 chart than it was in the
other charts.

5.3 Valley Duration

Duration Distribution

<=
2s
3s-
4s
5s-
8s
9s-
16s

17s
-32
s

33s
-1m
4s

1m
5s-
2m
8s

2m
9s-
4m
16s

4m
17s
-8m
32s

8m
33s
-17
m4
s

17m
5s-
34m

8s

34m
9s-
1h8
m1

1h8
m-
2h1
6m

2h1
6m
-4h
33m

4h3
3m
-9h
6m

9h6
m-
18h
12m

18h
12m

-1d
12h

1d1
2h-
3d4
9m

3d4
9m
-6d
1h

>=
6d1
h

0

5,000,000

10,000,000

15,000,000

20,000,000

Figure 5.5: Valley Durations

46

Figure 5.5 shows the distribution of the durations of the valleys found. The
duration is the time between the announcement of a valley and the with-
drawal of that announcement from service. The valleys used are within the
same date-range as the ones in Section 5.2, but only the “real” valleys are
used, not the ones that were actually siblings.

We see two very noticeable peaks at the less than 2 seconds (around 10
million) and the between 17 and 32 seconds (around 15 million) ranges. These
announcements are very likely part of route convergence and not intended as
a final route and thus withdrawn immediately. As in most routers the default
MRAI timer (minimum route advertisement interval) is 30 seconds, a fixed
route cannot be propagated within the first 30 seconds, which explains why
there is a peak in the 17 till 32 seconds range. The reason why there is also a
peak at the less than 2 second range is that, according to a recent survey [10],
a lot of network operators disable this MRAI timer allowing the incorrectly
announced routes to be withdrawn from service immediately.

Seeing that most valleys are very short-lived it seems as though most of
them are not intentionally announced, because the amount of time that route
will be used for routing purposes is negligible. However it can also be seen
that there are quite a few route leaks left that have a duration of hours or
even days. When counting all route leaks that take longer than 1 hour and
8 minutes there are still over 6 million route leaks with these durations. If
these routes are not intentional, they do impact the routing for a significant
amount of time.

5.4 Valleys over time

Number of open valleys per day

201
4-0
4-1
2

201
4-0
4-1
5

201
4-0
4-1
8

201
4-0
4-2
1

201
4-0
4-2
4

201
4-0
4-2
7

201
4-0
4-3
0

201
4-0
5-0
3

201
4-0
5-0
6

201
4-0
5-0
9

201
4-0
5-1
2

201
4-0
5-1
5

201
4-0
5-1
8

201
4-0
5-2
1

201
4-0
5-2
4

201
4-0
5-2
7

201
4-0
5-3
0

201
4-0
6-0
2

201
4-0
6-0
5

201
4-0
6-0
8

201
4-0
6-1
1

0

200,000

400,000

600,000

800,000

Figure 5.6: Valleys over time

47

Figure 5.6 shows per day the total amount of valleys that have not been
withdrawn at 8:00 for all sources. We see the amount of valleys does not
increase quickly and it often drops down again, making it uncertain if there
is a growing trend in the total amount of valleys. What can be seen is that
there is a big drop down in the amount of valleys at 2014-05-01. Since we
use relation data that changes monthly, valleys stored in the database will be
closed when the new relation data does no longer infer that valley as having
a valley free violation in it. Apparently about 28% of all the routes detected
as a valley before 2014-04-30 with the relation data from month 2014-04 are
no longer a valley according to the relation data for the month 2014-05. As
there is no relation data from CAIDA for this month a combined relation file
is created as described in Section 4.5, which can further explain the big drop
in total amount of valleys.

This indicates that the freshness of the relation file used has a significant
influence on what will be seen as a valley. It also seems to indicate that to
accurately find valley free violations one new relation data file per month
may not be frequent enough.

5.5 Top 10 triplets occurrences

AS Leak Triplet Top

7660|2500|4777

9308|9802|4808

35168|197556|60299

35168|197556|3216

10026|6939|15469

12880|48159|8529

9498|10026|2497

3491|209|3561

10026|6939|8492

306|575|27064

0

400,000

800,000

1,200,000

1,600,000

Figure 5.7: Top 10 AS leak triplets

A valley is created by three ASes in a row that have relationships that should
not follow each other according to the valley free rule. The three ASes that
form these valleys we call the AS leak triplet. In Figure 5.7 the top 10 most
frequently re-occurring AS leak triplets have been charted. Because it was
seen in Section 5.3 that a majority of the announced valleys have a negligible
duration, it was decided to count only the valleys with a duration of 1 minute
or higher. The total amount of valleys in the date range used that conform

48

to this constraint is about 19.5 million. In Figure 5.7 the top 10 AS leak
triplets together comprise 5632337 of these valleys. This means that the top
10 AS leak triplets are responsible for creating about 29% of all valleys.

AS Leak Triplet Top

7660|2500|4777

10026|6939|15469

9308|9802|4808

35168|197556|60299

23911|6939|6762

35168|197556|3216

3549|13030|15469

9498|10026|2516

14259|27899|7004

10026|6939|22652

0

400,000

800,000

1,200,000

1,600,000

(a) RIPE

AS Leak Triplet Top

9308|9802|4808

35168|197556|60299

35168|197556|3216

3491|209|3561

10026|6939|8492

10026|6939|852

12880|48159|8529

24490|24287|7660

306|575|27064

9498|10026|2497

100,000

300,000

500,000

700,000

900,000

(b) Oregon
AS Leak Triplet Top

9498|10026|2497

3549|6939|2516

20473|6939|2516

2914|4713|7500

18344|23911|7660

9498|10026|2516

35168|197556|60299

23911|6939|2516

4538|23911|7660

35168|197556|3216

0

50,000

100,000

150,000

200,000

(c) WIDE

Figure 5.8: Top 10 AS leak triplets per source

Figure 5.8 shows the top 10 AS leak triplet top 10 for all of the individual
route collectors we analysed. The top leak triplets observed by various route
collectors varies greatly. The overall most frequently occurring leak triplet
7660|2500|4777 is found only in the RIPE route collector, and not in any
of the other route collectors used. This specific case will be discussed more
thoroughly in Subsection 5.5.1.

The second overall most frequently occurring leak triplet 9308|9802|4808
is the most frequently occurring leak triplet in the Oregon data. However,
unlike the previous one, this triplet is also found in the RIPE top 10 (position
3) and while it does not show up in the WIDE top 10, the triplet does appear
there as well.

The third overall most frequently occurring leak triplet 35168|197556|60299
can be found in top 10 of all three of the route collectors (RIPE: #4, Oregon:
#2 and WIDE: #7) In the following subsections, some of the found valleys
will be further analysed to find out why they occur and why they either
appear at only a few route collectors or at all of them.

49

AS Leak Triplet Top

7660|2500|4777

9308|9802|4808

35168|197556|60299

35168|197556|3216

10026|6939|15469

12880|48159|8529

9498|10026|2497

3491|209|3561

10026|6939|8492

306|575|27064

0

400,000

800,000

1,200,000

1,600,000

(a) IPv4

AS Leak Triplet Top

23911|6939|6762

3549|6939|2516

3549|13030|15469

20473|6939|22652

15412|6939|22652

3549|6939|57821

3549|6939|3741

3549|6939|6881

3549|6939|8758

15412|6939|15469

50,000

100,000

150,000

200,000

250,000

(b) IPv6

Figure 5.9: Top 10 AS leak triplets per IP version

When comparing the valleys appearing while IPv4 prefixes are announced
with the once formed when IPv6 prefixes are announced it seems that there
are no AS leak triplets that appear in both lists. Also since the most fre-
quently announced IPv6 leak triplet is announced 212202 times, which is
lower than the 10th most frequently announced IPv4 triplet, the top 10 of
IPv4 is the same as the overall most frequently announced AS leak triplet
top 10. What is noticeable about the IPv6 chart is that AS6939 (Hurricane)
appears in all but one of the leak triplets listed in the top 10. This is likely
caused by Hurricane having different relationships for IPv4 and IPv6 routes.
The Hurricane valleys will be discussed further in Subsection 5.5.4.

5.5.1 The APAN - WIDE - APNIC valley

Figure 5.10: Valley APAN - WIDE - APNIC

The overall most frequently occurring leak triplet found was 7660|2500|4777.
In Figure 5.10 the ASes related to this valley have been drawn.

In this situation AS2500, belonging to the WIDE project, appears to be
leaking a provider route, received from AS7660 (APAN) to a peer AS4777
(APNIC). Therefore WIDE seems to provide free transit through APAN for
APNIC.

50

However, all of these ASes are found to be related to research/educa-
tional ASes that often do not follow regular relationships such as the once
inferred by CAIDA. APAN (the Asia Pacific Advanced Network) is a “back-
bone network that connects the research and education networks of its mem-
ber countries/economies to each other and to other research networks around
the world”[1]. The WIDE project is involved in “integrating academia and
industry into a unique consortium to help researchers with free and unre-
strained innovation overcome the traditional boundaries of organizations and
utilize new technologies to create a better society and achieve their own self-
realization.”[35] The Asia Pacific Network Information Centre (APNIC), is
the not-for-profit regional Internet registry for the Asia Pacific region.

Because of the nature of these organizations and because WIDE also
mentions [42] to be related to both APAN and APNIC it is likely that WIDE
is intentionally providing transit for APNIC through APAN. Since APNIC
is a direct peer of the RIPE route collector, this valley is observed at this
collector, but since this route is only used by APNIC and not announced
further, it does not appear at the other route collectors.

5.5.2 The aBitCool valley

(a) Valley according to CAIDA relation
data

(b) No valley when AS9308 and AS9802
are siblings

Figure 5.11: The aBitCool valley

The second overall most frequently appearing AS leak triplet was
9308|9802|4808 which is shown in Figure 5.11a. Here AS9802 appears to
leak a provider route from AS9308 to its other provider AS4808.

However, both AS9308 and AS9802 share the same AS name “CHINA-
ABITCOOL”. This seems to indicate that both belong to the same company
aBitCool and that they would not have a P2C relation, but a siblings relation.
As mentioned in Section 2.2, siblings can share any route and may appear
anywhere in the path without causing a valley.

51

To reduce the amount of valleys detected because of siblings relations
we used the CAIDA AS2Org data as mentioned in Section 2.3.1. However,
this data had not inferred these ASes as belonging to the same organisation.
(AS9308 was assigned organisation ID @aut-9308-APNIC, while AS9802 was
assigned organisation ID @family-35609)

The reason why the two ASes were not inferred as being siblings is un-
certain. Looking into the WHOIS data, both ASes share many similarities.
However, many fields also have the same information with minor alterations,
which may confuse the algorithm that CAIDA used.

For example, the admin and technical contact for both ASes is Wei He,
but they do not share the same handler ID, thus linking to two different
persons. On top of that, the person name for the one person object is Wei He,
while in the other person information it is filled in as He Wei, making it hard
for automated tools to see them as identical. However, the policy of AS9802
describes that it announces all ASes belonging to AS-21VIANET (21Vianet
is an old name of aBitCool), containing AS9308, AS9802 and various other
aBitCool siblings to AS4808, indicating that AS9308 and AS9802 indeed are
siblings and it is incorrectly inferred as being a valley.

5.5.3 The TNS Plus valleys

Figure 5.12: Valleys TNS Plus

The third and the fourth overall most reoccurring AS leak triplets are both
TNS Plus announcing a route from its provider Orbita Astana to two different
providers. However, both providers to which the routes are being announced
have defined in their routing specification to accept from TNS Plus, routes
listed in the AS-SET TNSPLUS group. This group contains Orbita Astana
and various other ASes that appear before that AS in the AS path. It
therefore seems plausible that Orbita Astana is not a provider for TNS Plus,

52

but that TNS Plus is a provider for Orbita Astana. If this would be the
case, TNS Plus would not be leaking a provider route, but just announcing
a customer route, which would mean there is no route leak at all.

5.5.4 The Hurricane valleys

Figure 5.13: Valleys Hurricane (IPv4)

The fifth and ninth most frequently occurring route leaks both involve Hur-
ricane announcing a route from its peer Pacnet to another peer, such as
Warinet or Obit. Since neither Pacnet, nor Hurricane, nor Obit provide
RPSL data to the WHOIS databases investigated, it is hard to tell what
the intended policies are. However Warinet does provide RPSL informa-
tion which shows that for IPv4 they are indeed peers (“mp-import: afi
ipv4.unicast from AS6939 action pref=150; accept AS-HURRICANE”), while
for IPv6 Warinet has configured Hurricane as being a provider (“mp-import:
afi ipv6.unicast from AS6939 action pref=150; accept ANY”).

However, the valley is detected in announcements containing IPv4 pre-
fixes, indicating that if the relation between Pacnet and Hurricane is indeed
a peering relation, Hurricane will indeed be providing transit between two
peers. However, AS-HURRICANE, which contains all the ASes of which
Warinet accepts routes from when received from Hurricane, contains also
AS10026 (Pacnet) which seems to indicate that either Pacnet is a client of
Hurricane or that it is for another reason intentionally providing transit be-
tween those networks.

Feedback from Hurricane indicated that both PacNet and Warinet are
clients of Hurricane and not peers. This indicates that the CAIDA relation-
ship the program relies upon seems to incorrectly infer peering relationships
for Hurricane with some of its clients which results in incorrect detections of
P2P-P2P valleys.

53

Figure 5.14: Valleys Hurricane (IPv6)

Apart from the appearances in the general top 10 leak triplet occurrences
(figure 5.7), Hurricane also is indicated as the ‘leaking AS’ in most of the
entries in the IPv6 chart (figure 5.9b). In most of these occurrences it looks
as though Hurricane is leaking a route from its provider AS3549 (Level-3) to
one of its peers.

When performing a WHOIS lookup for the as-set AS-HURRICANE,
which contains a list of all clients for Hurricane, we learn that AS6881 has
been defined as a client of Hurricane instead of a peer. Therefore it is likely
that this particular case is inferred incorrectly. When performing a WHOIS
lookup for the as-set AS-HURRICANEv6, which contains a list of all ASes
that are a client of Hurricane for IPv6 traffic, we notice that all “peers” ac-
cording to Figure 5.14 are actually clients for IPv6 traffic. This indicates
that Hurricane has different policies for traffic over different IP versions and
thus that using a relation inference which only outputs relations based on
one protocol will cause a lot of false positives to be found when used to find
valleys in the other protocol.

54

5.6 Leaks per country

3,4033,403 8,533,6638,533,663

US: 8533663

JP: 2803857

CN: 1845692

KZ: 1702997

NL: 769887

CH: 692815

IR: 666638

BR: 550576

GB: 483574

RU: 459208

Figure 5.15: Leaks per country

In Figure 5.15 the amount of leaks have been charted per country, where
a leak again is only counted when it lasted longer than 1 minute and was
of a real valley type. The countries most prevalent appearing at the top
leaks per country are mostly the same countries to which the ASes found as
being the leak AS in Section 5.5 belong. The United States appear at the
top, mostly because of various valleys at Hurricane (Section 5.5.4). Japan
appears second, which is mostly influenced by the WIDE route collector data
which introduced valleys such as the ones in Section 5.5.1. China appears
third which is mostly influenced by the missing siblings relation for aBitCool
as described in Section 5.5.2.

55

Chapter 6

Discussion

From all updates studied and analysed in Chapter 5, about 3.5% was found to
contain a “real” valley free violation according to the relation data we used.
The type of violation most frequently seen was a peer-to-peer relation fol-
lowed by another peer-to-peer relation. This most frequently found violation
type seemed to be heavily influenced by the top leak triplets. Depending on
the route collector used, the valleys detected differed significantly, resulting
in different distributions of the violation types between the various collectors.

The majority of the route leaks was found to have very short lifetimes,
mostly lower than a minute. This is most likely caused by route convergence.
The impact of the routes announced with such a low lifetime is negligible as
due to their short duration not much traffic will traverse over this route.
About 25% of the valleys however have a longer duration than a minute
and about 2.6% lasts even over 6 days. If those are indeed violations of the
policies, those leaks will be certain cause for concern.

Over a longer period of time, the amount of detected valleys does not
seem to grow. What is found however, is that towards the end of a month
the amount of detected valleys increases, while at the beginning of the next
month there is a significant amount of valleys that are closed again. This
is due to the relations file we use are only refreshed once a month. If a
relation thus changes during a certain month it may be incorrectly detected
as a valley until the next month were the change in relationship has been
incorporated in the new relational data. This indicates that the project will
benefit from more frequently renewed relation data.

About 29% of all valleys found in the given time period with a duration
longer than a minute, were found to be caused by a group of the 10 most
frequently recurring leak triplets. This indicates that certain ASes are more
frequently involved in detected valleys than others. However, most of the
cases were later on found to be correctly according to policy and thus false

56

positives, making it uncertain if this also applies for the “real route leaks”.
To determine the causes of the route leaks found, several of the frequently

recurring leak triplets were further investigated using information we could
find about the ASes and the RPSL data if available. For the ASes for which
enough information could be found to determine why the valley free violation
was detected, it could be determined that the detection was very likely caused
by either an incorrectly inferred relationship or a more complex relation
than the ones defined in the relationship data we used. For other ASes not
enough information could be gathered to determine whether the route leak
was correctly detected or not, nor what the cause of the route leak might
have been.

57

Chapter 7

Future Work

7.1 Utilizing knowledge on complex relation-

ships

The inferred AS relation dataset used consists only of provider-to-customer
and peer-to-peer relations. The siblings inferences have been added to add
the sibling-to-sibling relation over the relation that was originally inferred.
However, apart from these three relations there exists also several “complex”
relationships. Giotsas et al. [11] have recently published an article about the
inference of two of those complex relationships. One of them is the partial
transit relationship, where a customer pays the provider for transit to the
provider’s client and peering routes, but not for its provider routes. The
other complex relation that will be inferred is the hybrid relation, where the
relationship used between two ASes depends on the interconnection point.
This is a type of relation similar to what was previously seen at Section 5.5.4
where the AS had a different relation based on the IP version used. Both
of these new types of relation inferences can help reduce the amount of false
positives detected. Hybrid relations will allow the program to remove the
false positives that were detected because the relation was only inferred for
the IPv4 data. Partial transit relationships will likely have been formerly
inferred to be a peering relation as it shares most of its characteristics with
a peering relation, e.g. the routes from a partial transit client will not be
propagated up to a clique AS like in customer-to-provider relations, so the
knowledge about these relationships will likely reduce the amount of viola-
tions where a peer route is leaked to another peer.

58

7.2 Adjust relations manually to decrease

number of false positives

As seen in Chapter 5, there are quite an amount of valleys found that are
most certainly not real route leaks but rather complex relationships to pro-
vide connection between research/educational ASes. Therefore to reduce the
amount of false positives, the application will benefit from adjusting the re-
lations for these type of ASes manually when such artefacts are found. It
was chosen not to adjust the relations manually for the current research as
this requires a lot of manual adjustments based on the assumption that these
ASes are in fact creating valleys because of those reasons, while other ASes
that create valleys because of the same reasons may be missed, because we
could not identify them having such relationships. This would create incon-
sistency in the results, so instead of manually removing them it was decided
to document the appearance of them and leave the removal as future work.

7.3 Validation with Autonomous Systems

The majority of the valley free violations currently detected are expected to
be either intentional or a result of the complex relations mentioned before. To
get a better view on which valley free violations are actually causing trouble
and which ones are intentional, validation with the Autonomous Systems
responsible for the “leak” is necessary. Based on this feedback the relations
inference, siblings inference or working of the system should be modified to
better cope with specific situations where false positives are being detected.

59

Chapter 8

Conclusion

In this project we have used the valley free rule to detect route leaks in
publicly available BGP data. We have found and compared two different
sets of relation data to find the data set most reliable for this purpose. We
have further enhanced this relation data with the siblings inferences from
the same source to reduce false positives caused by incorrect inferences that
where actually sibling relations. Also we have looked at other related projects
to see how we could improve upon them.

We have designed and implemented an application to automatically down-
load publicly available BGP updates, find valleys within them, store them in
the database and generate statistics from the data gathered. This application
has been used to parse two months of data from 3 different route collectors.

From the data we investigated upon, about 3.5% was found to contain
a valley free violation according to the relationships data from CAIDA. A
majority of about 66.3% of those valleys was withdrawn from service within
the first 64 seconds. The total amount of valleys that have not been with-
drawn yet at any given time was found to be dependent on the relation data
used, but showed no sign of constant increment nor decrement over longer
periods. It was found that the 10 most frequently recurring AS leak triplets
were responsible for 29% of all route leaks.

Many of the leak triplets found in the top 10, however were found to be
false positives, caused by either incorrect relation inferences or relationships
more complex than captured in the relations files used. This indicates that
although the tool can filter out possible route leaks from large data sources, it
still needs a lot of manual verification to filter out the false positives from the
true positives to uncover the “real violations”. Utilizing the knowledge on
complex relationships and allowing adjustments to the relations may yield
better results in the future. Also validating the results with Autonomous
Systems will make it possible to better find the cause of violations.

60

Bibliography

[1] APAN. the Asia Pacific Advanced Network. 2009. url: http://www.
apan.net/ (visited on 10/16/2014).

[2] Dan Ardelean and RIPE NCC. BGPDump. Jan. 2011. url: http:

//www.ris.ripe.net/source/ (visited on 03/26/2014).

[3] Christoph Biedl. BGPDump Issue #19. May 2014. url: http : / /

bitbucket.org/ripencc/bgpdump/issue/19/looking- for- a-

security-contact (visited on 07/28/2014).

[4] L. Blunk, M. Karir, and C. Labovitz. Multi-Threaded Routing Toolkit
(MRT) Routing Information Export Format. 2011. url: http : / /

tools.ietf.org/html/rfc6396 (visited on 07/28/2014).

[5] Martin Brown. Pakistan hijacks YouTube. Feb. 2008. url: http://
www.renesys.com/2008/02/pakistan-hijacks-youtube-1/ (visited
on 09/17/2014).

[6] CAIDA. Mapping Autonomous Systems to Organizations: CAIDA’s
Inference Methodology. Aug. 2014. url: http://www.caida.org/

research/topology/as2org/ (visited on 09/17/2014).

[7] Jim Cowie. Chinas 18-Minute Mystery. Nov. 2010. url: http://www.
renesys.com/2010/11/chinas- 18- minute- mystery/ (visited on
07/30/2014).

[8] Jim Cowie. The New Threat: Targeted Internet Traffic Misdirection.
Nov. 2013. url: http : / / www . renesys . com / 2013 / 11 / mitm -

internet-hijacking/ (visited on 07/30/2014).

[9] Lixin Gao. “On inferring autonomous system relationships in the Inter-
net”. In: IEEE/ACM Transactions on Networking (ToN) 9.6 (2001),
pp. 733–745.

[10] Phillipa Gill, Michael Schapira, and Sharon Goldberg. “A survey of
interdomain routing policies”. In: ACM SIGCOMM Computer Com-
munication Review 44.1 (2013), pp. 28–34. url: http://www.cs.bu.
edu/fac/goldbe/papers/survey.pdf.

61

[11] V. Giotsas et al. “Inferring Complex AS Relationships”. In: Internet
Measurement Conference (IMC). Nov. 2014.

[12] Vasileios Giotsas and Shi Zhou. “Detecting and assessing the hybrid
IPv4/IPv6 as relationships”. In: ACM SIGCOMM Computer Commu-
nication Review. Vol. 41. 4. ACM. 2011, pp. 424–425. url: http://
conferences.sigcomm.org/sigcomm/2011/papers/sigcomm/p424.

pdf (visited on 03/10/2014).

[13] Vasileios Giotsas and Shi Zhou. “Valley-free violation in Internet rout-
ing - Analysis based on BGP Community data”. In: Communications
(ICC), 2012 IEEE International Conference on. IEEE. 2012, pp. 1193–
1197. url: http://www0.cs.ucl.ac.uk/staff/V.Giotsas/files/
giotsas.icc.2012.pdf (visited on 03/10/2014).

[14] Google. Google Charts - Google Developers. Nov. 2008. url: https:
//developers.google.com/chart/ (visited on 07/31/2014).

[15] J. Hawkinson and T. Bates. Guidelines for creation, selection, and
registration of an Autonomous System (AS). Mar. 1996. url: http:
//tools.ietf.org/html/rfc1930 (visited on 08/25/2014).

[16] Geoff Huston. Leaking Routes. Mar. 2012. url: http://labs.apnic.
net/blabs/?p=139 (visited on 07/30/2014).

[17] M. Lepinski. An Infrastructure to Support Secure Internet Routing.
Feb. 2012. url: http://tools.ietf.org/html/rfc6480 (visited
on 07/30/2014).

[18] M. Lepinski. BGPSEC Protocol Specification (draft). July 2014. url:
http : / / tools . ietf . org / html / draft - ietf - sidr - bgpsec -

protocol-09 (visited on 07/28/2014).

[19] M. Luckie. “Spurious Routes in Public BGP Data”. In: ACM SIG-
COMM Computer Communication Review (CCR) 44.3 (July 2014),
pp. 15–21. url: http://www.caida.org/publications/papers/

2014/spurious_routes_public_bgp/ (visited on 07/28/2014).

[20] M. Luckie et al. “AS Relationships, Customer Cones, and Validation”.
In: Internet Measurement Conference (IMC). Oct. 2013, pp. 243–256.
url: http://www.caida.org/publications/papers/2013/asrank/
(visited on 03/04/2014).

[21] Jared Mauch. BGP Routing Leak Detection System. Sept. 6, 2007.
url: http : / / puck . nether . net / bgp / leakinfo . cgi (visited on
02/24/2014).

62

[22] Jared Mauch. Detecting Routing Leaks by Counting. Oct. 2007. url:
http://www.nanog.org/meetings/nanog41/presentations/mauch-

lightning.pdf (visited on 07/28/2014).

[23] Riad Mazloum et al. “Violation of interdomain routing assumptions”.
In: PAM’2014 (Jan. 2014). url: http://hal.archives-ouvertes.
fr/hal-00926132/ (visited on 03/10/2014).

[24] D. McPherson et al. Route-Leaks & MITM Attacks Against BGPSEC
(draft). Apr. 2014. url: http://tools.ietf.org/html/draft-

ietf-grow-simple-leak-attack-bgpsec-no-help-04 (visited on
07/30/2014).

[25] David Meyer. University of Oregon Route Views Archive Project. 2014.
url: http://routeviews.org (visited on 02/24/2014).

[26] MongoDB. 2009. url: http : / / www . mongodb . org (visited on
02/24/2014).

[27] MongoDB - Geospatial Indexes and Queries. 2011. url: http://docs.
mongodb.org/manual/applications/geospatial-indexes/ (visited
on 07/28/2014).

[28] S. Murphy. BGP Security Vulnerabilities Analysis. Jan. 2006. url:
http://tools.ietf.org/html/rfc4272 (visited on 07/28/2014).

[29] MySQL :: MySQL 5.1 Reference Manual :: 11.5.3.6 Creating Spatial
Indexes. 2005. url: http://dev.mysql.com/doc/refman/5.1/en/
creating-spatial-indexes.html (visited on 07/28/2014).

[30] Jon Oberheide. jon.oberheide.org - pybgpdump. 2007. url: https://
jon.oberheide.org/pybgpdump/ (visited on 07/28/2014).

[31] Jon Oberheide. pybgpdump - Issue 1. 2013. url: https : / / code .

google.com/p/pybgpdump/issues/detail?id=1#c6 (visited on
07/28/2014).

[32] Ricardo Oliveira, Walter Willinger, Beichuan Zhang, et al. “Quanti-
fying the completeness of the observed internet AS-level structure”.
In: (2008). url: http : / / irl . cs . ucla . edu / ~rveloso / papers /

completeness_tr.pdf (visited on 03/04/2014).

[33] Tom Paseka. Why Google Went Offline Today and a Bit about How
the Internet Works. Nov. 2012. url: http://blog.cloudflare.com/
why-google-went-offline-today-and-a-bit-about (visited on
07/30/2014).

63

[34] Alex Pisolov and Tony Kapela. Stealing The Internet - An Internet-
Scale Man In The Middle Attack. Aug. 2008. url: https://www.

defcon.org/images/defcon-16/dc16-presentations/defcon-16-

pilosov-kapela.pdf (visited on 07/30/2014).

[35] WIDE Project. WIDE:About WIDE:Background. 1988. url: http://
www.wide.ad.jp/about/background.html (visited on 10/16/2014).

[36] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-
4). Jan. 2006. url: http://tools.ietf.org/html/rfc4271 (visited
on 07/28/2014).

[37] rfc1036. Parser for zebra/MRT BGP routes dumps. 2007. url: https:
/ / github . com / rfc1036 / zebra - dump - parser (visited on
07/28/2014).

[38] RIS Raw Data. 2014. url: http://www.ripe.net/data- tools/

stats/ris/ris-raw-data (visited on 02/24/2014).

[39] The CAIDA UCSD AS Relationships Dataset. - <2013-01-01 - 2013-
11-01>. 2013. url: http : / / www . caida . org / data / active / as -

relationships/ (visited on 02/24/2014).

[40] Q. Vohra and E. Chen. BGP Support for Four-Octet Autonomous Sys-
tem (AS) Number Space. 2012. url: http://tools.ietf.org/html/
rfc6793 (visited on 07/28/2014).

[41] Stella Vouteva and Benno Overeinder. “BGP Route Leaks Analysis”.
2013.

[42] WIDE. WIDE:About WIDE:Relationship. 1988. url: http://www.

wide.ad.jp/about/relationship.html (visited on 10/16/2014).

[43] He Yan et al. “BGPmon: A real-time, scalable, extensible monitoring
system”. In: Conference For Homeland Security, 2009. CATCH’09. Cy-
bersecurity Applications & Technology. IEEE. 2009, pp. 212–223.

[44] Yu Zhang. http://irl.cs.ucla.edu/topology/. 2013. url: http://irl.
cs.ucla.edu/topology/ (visited on 02/24/2014).

64

Appendix A

Difficulties experienced

A.1 Unique time values

Although the current MRT specification [4] specifies MRT types for BGP
messages containing timestamps with microsecond accuracy (BGP4MP ET),
all of the sources we use dump their data using the BGP4MP MRT type
which has only seconds accuracy. When multiple updates for the same prefix
are announced by the same neighbour it is important to know which one
occurred first, since if the first one contains a valley and the second one does
not, the latter update will close the valley created by the previous message.
However, it occurs quite frequently that an AS announces the same prefix
several times within a second and since the timing is only accurate up till the
seconds, it cannot be seen from the individual messages which one occurred
first. Therefore to differentiate the updates from the same source, we created
an algorithm that adds fictional milliseconds to the timestamps.

- For every update from one neighbour AS all prefixes in that update will
be added to a set and the milliseconds index for that neighbour AS will be
set to 0

- If another update from that neighbour AS arrives all its prefixes will be
compared to the ones already in the set.

- If any of the prefixes was already in the set, the milliseconds index will
be upped and the update and every subsequent update will get the increased
millisecond set

- If none of the prefixes were in the set, the current value of the millisec-
onds index will be used.

- When a new second is read, all sets and indexes will be reset.
Just adding a millisecond for every update arrived (by the same neigh-

bour) was also considered, but since ASes sometimes send more than 1000

65

updates in a single second, this would overflow the milliseconds range. When
a single neighbour AS decides to announce the same prefix more than 1000
times in one second, this would crash the program. As of now this has not
yet occurred.

A.2 Inconsistent dump filenames

Dump files are usually build at regular intervals. RIPE [38] generates a
dump file every 5 minutes, while the dump files at routeviews[25] are gen-
erated every 15 minutes. The file name follow an expected format of up-
dates.yearmonthday.hourminute.gz or .bz2. However every once in a while
the file is dumped a few minutes later resulting in a filename of for exam-
ple updates.20140211.0707.gz. Since it sometimes takes quite some time to
download the list of all files available at a server in a directory it would slow
down the program and increase the load on the server when the filenames
would be retrieved from this list all the time. However to make the appli-
cation compatible with such renames occurring there was a need for some
complex scripts that would handle such cases correctly, while minimizing the
slowdown for all correct file names.

A.3 Irregular file availability times

Apart from the inconsistency in the filenames, the files are also available at
irregular time intervals. This occurs far more often than the inconsistent
naming of the files. Normally, the intervals when a new file is available is
the same interval as when a file is generated (e.g. 5 or 15 minutes). How-
ever, it happens quite often that a file is delayed for a certain time and that
afterwards multiple new dump files are made available in a batch. Since
the application tries to download and parse the files as soon as they be-
come available, not being able to predict when to download the file can be
problematic.

A.4 Python version compatibility

When Python 3.0 was released in 2008, it was decided to clean up the lan-
guage with no regards to backwards compatibility. Therefore most code
written for Python 2.x is not compatible with Python 3.x and vice versa.
Since Python 2.x is still the default version in most Linux distributions, it
was desirable that the project would be Python 2.x compatible. However,

66

since this may change in future distributions, the project should be future
proof as well. It is possible to keep projects compatible with both Python
versions, but for this a lot of workarounds need to be created. Making the
print statement / function compatible is pretty easy, as when used as a func-
tion in Python 3.x it will just see the parenthesis as redundant in Python
2.x and ignore them. In this section I will describe some of the harder dif-
ficulties experienced while making the program Python 2.x and Python 3.x
compatible.

A.4.1 Bytes

In Python 2.7 bytes and strings refer to the exact same type. In Python
3.x however, bytes are very different from strings. When retrieving an index
from a Python 3 byte, an int will be returned, where in Python 2.7 a str will
be returned. This also means that if you want to concatenate two indexes of
a byte to another byte object, you cannot just use b[0] + b[1] for example, as
this will add the two integers to each other instead. To overcome the differ-
ences in bytes in Python 2.7 and 3.x, we have taken two different approaches
within the project. When the bytes come from an input stream, we just keep
them as string and check for byte operations whether or not the value should
be interpreted as string or as integer or as bytes. When we need to handle
an argument in a function differently when it is a byte or a string however,
e.g. for formatting before inserting into the database, a custom bytes class is
used that mimics the behaviour of the Python 3.x bytes type in Python 2.7,
while retaining the use of the original bytes in Python 3.x. This way bytes
can be differentiated from strings and there is no need for extra workarounds
for bytes operations on them.

A.4.2 URLLib

The functions to work with web data in Python 2.7 are scattered around
multiple modules. To read the contents of an URL, urllib2.urlopen should
be used, as urllib.urlopen is deprecated. To download the contents of an
URL urllib.urlretrieve can be used, as urllib2 does not have that function.
To urlencode a dictionary urllib.urlencode is used, even though other URL
parsing functions can be found in the urlparse module. In Python 3.x there is
only one urllib module, which contains the sub modules request, parse, errors
and robotparser. To be compatible with both Python 2.7 and Python 3.x, a
custom urllib module is created which contains function redirects based on
whether or not urllib2 exists. So for Python 3.x the layout will remain the

67

same, while for Python 2.7 the functions will be in the same sub modules as
they are in Python 3.x

It was also decided not to use the original urlretrieve function, because
it did not handle errors the way it was expected. When urlretrieve is used
to download an URL leading to a non-existing document, the 404 page will
be downloaded without warning. It was decided to create a new download
function instead which raises an error when an unexpected status code is
returned instead, which the program can catch to handle.

A.5 Database

To store all the valleys the program has found a database will be used. There
are many different types of databases to choose from, and all of them have
different things they can and cannot do. Unfortunately it is not always clear
before the beginning of the project what features the database should support
and which database should therefore be chosen.

A.5.1 MongoDB

Initially the project used MongoDB. MongoDB is currently the “leading
NoSQL database”[26] and is relatively easy to use. Instead of defining a
schema beforehand and inserting values based on that schema, you just in-
sert dicts with similar keys to the same collection. For querying also dicts
are used with the keys that should be equal or special keys such as $gt for
comparisons. It is therefore not necessary to use a specialized language such
as SQL to use MongoDB.

However, the amount of valleys added to the database grew very fast and
after a while we ran into a series of problems. First of all was the disk space,
the server initially had about 15 GB of disk space allocated to the database,
but with the indexes used, this was not even enough for 40 days of data.

After expanding the disk space a new issue arrived which involved a
scalability issue. The queries used to produce the statistics took over a
day, and that was even before all the data originally planned to be used was
in the database. After investigating the problem, it was found that some
queries could be improved by creating compound indexes. All needed fields
were already indexed as single-key indexes, but as the MongoDB version
used (2.4.9) did not support index intersection yet, only one index would
eventually be used and the rest of the query would be performed without
indexes. Adding these compound indexes increased the size of the database

68

even further, since each type of query now needed its own compound index
defined.

On top of that we wanted all queries between a time range of two months,
but also wanted certain queries to count the amount of valleys with a duration
within a certain range for example. Within a compound index however, only
one key in the index can be used for range queries, making it impossible to
successfully optimize a query with a time-range and a duration range.

Also to count the amount of valleys active at a certain time point a query
is needed in the form time < timepoint < end time. Now time < timepoint
can be indexed or timepoint < end time, but not both. After investigating
into possible solutions, it was found that these type of queries could be made
scalable using spatial indexes. However, MongoDB only supports geospatial
indexes [27] which did not seem to solve this problem. The spatial indexes
that would solve this problem can be created in MySQL [29] and only for
MyISAM tables.

A.5.2 MySQL

In order to support queries where valleys are selected that have a time less
than a certain value and end time higher than that value, it was decided to
rewrite the database part of the application to support MySQL instead of
MongoDB. While this indeed allowed the queries to be executed much faster,
it significantly incremented the insertion time, as apparently the creation of
the values to be indexed is not a quick task. Since the amount of inserts is
quite high and the amount of queries to be performed is not that big this
solution was thus not sufficient.

Since the queries to be executed to get the data that was necessary for the
charts is known beforehand it was decided to, instead of querying the whole
database with some keys that are not indexable together, create separate
statistics tables which will be filled daily with the results needed for only
that day. Since a smaller part of the data is used every time, the lack
of some indexes is less noticeable, while when the statistics over a certain
period need to be requested only the statistics tables have to be queried and
summed together.

69

