
Formalization and Verification of the Shim6 Protocol

Matthijs Mekking

May 2007

Contents

Acknowledgments 5

1 Introduction 7
1.1 Background . 7
1.2 Problem description . 9

1.2.1 Draft specification of Shim6 9
1.2.2 Implementation experience 10

1.3 Outline . 11

2 Shim6 13
2.1 Architecture . 15
2.2 Protocol overview . 16

2.2.1 Context establishment exchange 17
2.2.2 Failure detection and locator pair exploration 21

3 Formal methods applied to Shim6 23
3.1 Modeling context establishment . 24

3.1.1 The network . 25
3.1.2 The context . 27
3.1.3 The dispatcher . 31
3.1.4 The upper layer protocol . 34
3.1.5 Initializing the model . 36

3.2 Adding REAP . 37
3.2.1 Failure detection and locator pair exploration 38

4 Verification 45
4.1 Abstractions . 46
4.2 Results . 48

4.2.1 Context establishment . 48
4.2.2 Reachability protocol . 50

4.3 Formalization results . 52

5 Conformance testing 55
5.1 Test setting . 55

5.1.1 The shimulator . 55
5.1.2 The virtual network . 56
5.1.3 The Wireshark traffic analyzer 57

3

4 Contents

5.2 Results . 60
5.2.1 Implementation requirements 61
5.2.2 Test conclusions . 69

6 Conclusions 71
6.1 Future Work . 72

Appendices

A List of abbreviations 73

B Adjustments to the Shim6 model 77
B.1 Updated context establishment . 77
B.2 Abstracted context establishment . 79

B.2.1 Packet structure . 79
B.2.2 Merging locations i2sent and i2bissent 79
B.2.3 All Shim6 enabled hosts . 80
B.2.4 No context forking . 81

Acknowledgments

Foundation NLnet Labs

First of all, I would like to thank the foundation NLnet Labs. They provided me the
opportunity to perform my final project on a subject that I was highly interested in.
I appreciated the openness of the my research, as well as the technical support. This
contributed to a very good work environment. I also enjoyed the technical meetings
where I could share my results with the NLnet Labs team, but where I also could
learn about other Internet protocols like, for example, Unbound and DNSSEC. I
would especially like to thank Wouter Wijngaards, my supervisor at NLnet Labs.
He supported me with the technical unclarities, helped me improving my thesis and
guided the project extensively.

Readers

I would like to thank everybody that have been taking their time to read this
thesis. Special thanks goes out to those readers that helped me improve my thesis
scientifically and linguistically: my girlfriend Véronique Lensen, my friends Martijn
Velthausz and Jelte Jansen, the latter also being a member of the NLnet Labs
team, Olaf Kolkman and Wouter Wijngaards of the NLnet Labs foundation, Theo
Schouten and Frits Vaandrager, my supervisors at the Radboud University.

Friends and family

Last but not least, I would like to thank my parents for supporting me financially.
Together with my girlfriend, they helped me trough the difficult times and they
showed special, non-scientifically interest in my project.

5

Chapter 1

Introduction

1.1 Background

People become more and more dependent on modern communication technology.
Nowadays, the Internet is used for a broad variety of work and leisure activities and
is accessed via more and more devices such as wireless computers and mobile phones.
The more activities you have on the network, the more important the reliability of
your network connection becomes. As an Internet user, you probably recognize the
annoyance when using the Internet, the network connection suddenly fails and you
are no longer able to continue your work. Also, if you provide a service on the
Internet, whether you sell products or share your travel adventures with others,
you would like to be reachable to the rest of the world as much as possible.

An increasingly used technique to enlarge the reliability of the network connection
is called multihoming. The most important reasons for multihoming are [Abl05]:

• Redundancy In the case of a link failure, the connection may continue at
a different, working link. Normally, a computer device is connected to the
Internet with one single link. If this link fails, for example due to a fiber cut
or a bad router interface, the connection will go down. When multihomed, a
device is provided with multiple links, protecting you against these failures.

• Load sharing Load sharing refers to distributing incoming and outgoing
traffic using different links, leading to more efficient and possibly faster com-
munication.

• Performance With multihoming, a device can be protected from perfor-
mance difficulties on its outgoing links. If there is a congestion on a certain
path, outgoing messages can be transmitted using a different link, so that the
congested path is avoided.

• Policy Another reason to multihome is choice. For example, provider X might
offer traffic of a certain type at lower cost than provider Y does. By setting
up policies, the device is able to route this type of packets via provider X and
other packets via provider Y, resulting in a more advantageous situation for
the user.

7

8 1. Introduction

In the current approach, multihoming is deployed using routing. The Border Gate-
way Protocol (BGP-4, [Rek06]) is a routing information protocol and is used to
announce routes to the customer from two or more service providers. This provides
the rest of the Internet with multiple paths back to the multihomed site and the
service provider supplies the multihomer with additional possible paths for its out-
going traffic. In cases of a failing outgoing link, outgoing traffic will automatically
be routed via one of the remaining links. BGP-4 will notify other networks they
need to route incoming traffic via another service provider and link.

Multihoming with BGP-4 requires IP address space. This is supplied by a Regional
Internet Registry (RIR), an organization overseeing the allocation and registration
of Internet number resources within a region. There are two types of address space
that can be issued: provider assigned (PA) space and provider independent (PI)
space. PA space is assigned to you by your primary service provider, while PI space
is directly received from a RIR. For PI address space, certain requirements have
to be satisfied. The main advantage of PI space is that when switching providers,
you don’t have to renumber your IP addresses, which is a complex process [Car96].
Furthermore, PA addresses are subject to being filtered. However, when the an-
nouncement is filtered out, packets still flow towards the primary service provider.
But if this occurs on a large scale, the multihomer must rely upon its main provider.
This reliance might result in an effective single point of failure.

So for multihoming, PI address space is preferred. If an organization has sufficient IP
addressing requirements, it may be supplied with PI space. But many organizations
that do wish to multihome cannot meet these requirements. Besides, there aren’t
enough IP addresses to provide multihoming to everybody. Another problem is
that each site that uses PI addresses introduces an additional prefix into the global
routing table. Being reachable through any of its providers implies that a customer
network must be visible in the inter domain routing system. This will increase
the number of prefixes in the routing tables and the route selection procedure will
require more resources. The growth of the routing table is recognized as a scalability
problem [Mey06].

The currently used Internet mainly uses version 4 of the Internet Protocol (IPv4)
and does not provide enough addresses to multihome on a large scale. IPv4 ad-
dresses are represented by 32 bits, that is, there are 232 different possible addresses.
This address space is insufficient if the number of Internet access points grow con-
siderably. Due to these limitations, the Internet Engineering Task Force (IETF)
started to develop a successor protocol, called IPv6 [Dee98]. The most important
changes are:

• Extended address space The address format is extended from 32 bits to
128 bits, providing plenty of IP addresses.

• Stateless autoconfiguration In IPv4, an unique IP address for every device
would have to be assigned, using the Dynamic Host Configuration Protocol
(DHCP) or through manual configuration. In IPv6, if a new booting device
comes up and asks for its network prefix, it would get one or more prefixes
from a router on its link. With this prefix information, it can autoconfigure
one or more valid IP addresses.

1.2. Problem description 9

• Simplification of header format Only the required information is stored
in the header format. Optional information is stored in extension headers.
The simpler header format allows faster processing and more flexibility in
extending the protocol.

1.2 Problem description

To summarize, multihoming is a great technique for increasing connection reliability
and traffic engineering purposes, but it also increases concerns about the scalability
of address space and routing techniques [Cla91]. Shim6 is a multihoming protocol
that is being developed in order to solve these issues.

1.2.1 Draft specification of Shim6

The most important and most often used Internet protocols are standardized by
the IETF. Since these standards serve as a guide to many different developers,
it is important that these documents only allow for one clear interpretation, are
complete and ensure the required functionality. The IETF has defined a process to
create Internet standards (RFC 2026, [Bra96]) in order to improve the specifications.
These documents are often written in an informal language that allows ambiguities,
omissions and inconsistencies that are difficult to detect.

At the time of writing, Shim6 is very close to become a proposed standard. This
means that it has enough community interest to be considered valuable. The amount
of work that is being done at this moment reflects the high rate of interest. Several
organizations are currently developing Shim6 implementations (see [Bar06], [Tae06]
and [Hen06]). A proposed standard usually does not require an implementation
of the referenced protocol, because at this point of time, the document may still
contain problems. Therefore, RFC 2026 suggests that developers should treat the
proposed standard as immature specifications. Implementations made at this point
should especially be used to gain experience and clarify specifications. It includes
extensive testing and a thoroughly study of the source code. This method however
has its disadvantages. Given an implementation, it still might be hard to detect
some types of errors. Even if an error is detected, it can be difficult to solve this in
the implementation. Also, implementing a protocol is a time-consuming activity. In
short, this process takes quite some time, needs to be carried out by people with a
lot of knowledge and it is still hard to detect flaws.

Applying formal methods can increase the reliability and robustness of a specifica-
tion. Formal methods may help to detect issues, and help to improve the quality
of the protocol standards. Van Langevelde, Romijn, and Goga [van03] for example,
applied formal methods during the development of the IEEE 1394.1 FireWire Net
Update standard. This work resulted in the discovery and correction of many errors,
omissions and inconsistencies. The advantages with regard to experimental imple-
mentations are that it gives more provable certainty, flaws can be detected and fixed
with more ease. Unfortunately, formal methods still require a lot of knowledge of
the protocol as well as formal notations. Although the assessment of Shim6 within

10 1. Introduction

the IETF is substantial, attempts to include formal descriptions for protocols only
succeeded partly. Some protocol standard do include finite state machines (FSMs),
but these are mostly illustrative and partly informal.

One type of verification is called model checking. Model checking allows auto-
matic verification of certain system properties at a suitable level of abstraction.
Van Langevelde et al. showed that model checking can be successfully applied to
protocol descriptions or implementations, but the technique also has its practical
limitations. The main problem is the so-called state space explosion problem. Mod-
eling a system in realistic detail is practically impossible because we need to deal
with all possible behavior of the environment of the system. This requires a great
number of variables and processes, resulting in an exponential growth of the state
space.

Model checkers cope with the state space explosion problem by using techniques
such as abstraction, decomposition and symmetry reduction. Abstraction is used
when a system does not depend on an actual value of a certain variable, but rather
on a general value. For example, an action can depend on the value of a variable
i. Suppose i is used in an if construction: if(i<0), the impact of value of i can
be reduced to two abstract values positive and negative. Decomposition refers to
reducing a system into a smaller system. Parts of the system that do not influence
a certain property, can be safely removed. Symmetry reduction is a method to detect
identical states that can be mapped onto one state. This significantly reduces the
state space. On the other hand, finding the right balance between abstraction and
reality can be hard. The level of abstraction should be high enough to simplify the
system and avoid state space explosion, but should not obscure the relationship
between the model and the system that they represent.

Applying formal methods and constructing a prototype implementation are useful
techniques in order to verify properties that a protocol must satisfy. Both techniques
have its own advantages and disadvantages, but may complement each other while
verifying a standard. Currently, the IETF only uses the latter technique. In this
thesis, I shall show how formal methods can be applied to Shim6, in order to clarify
the specifications. Such notation should be easy to understand, so that programmers
are able to read it. It should have the right abstractions, so that the relationship with
the document is clear, but does not suffer from the state space explosion problem. I
shall provide formal notations that meet the suggested requirements. Such activity
can be applied to other Internet standards as well, to improve the quality of network
protocols.

I have modeled two critical phases of the Shim6 protocol. The two algorithms have
been modeled with a model checker called Uppaal . The tool allows us to spec-
ify, validate and verify models of real-time systems. This revealed several errors
that were not spotted before, and that were difficult to derive from the protocol
specification.

1.2.2 Implementation experience

The IETF considers that implementation is a strong argument in favor of a pro-
posed standard designation. Such process is not required, but is considered desirable

1.3. Outline 11

(the Internet Engineering Steering Group (IESG) may require implementation to a
specification that affects the core Internet protocols, which is true for Shim6). The
specification should also have no technical omissions. The problem here is that it is
difficult to determine if the implementation in question is conform the specification.
And because the documents are written in informal language, this process becomes
even more difficult.

There have been defined some rules to facilitate the process (RFC 2119, [Bra97]).
RFC 2119 defines keywords that indicate the requirements. The keywords can be
included in the specification and are written in capitals. For example, the keyword
MUST means that the definition is an absolute requirement, and MUST NOT
means that the corresponding behavior is absolutely prohibited. There exists weaker
forms of keywords like SHOULD, meaning that there may exist valid reasons to
ignore the requirement, but the full implications must be understood and carefully
weighed, or MAY, meaning the requirement is truly optional.

I have performed a conformance test on one of the Shim6 implementations. These
implementation already have contributed to the Shim6 draft specification, but did
not mentioned the problems that were found through model checking. By per-
forming such a test, I try to find out if the implementation correctly follows the
specification. If so, it should encounter the same problems as our formalized model.
The test results can than form a basis for comparing the two methods in question.
Because the implementation is a prototype version, several other problems were
discovered.

1.3 Outline

Chapter 2 (page 13) provides a more detailed description of the Shim6 protocol.
This section discusses the protocol being examined in this thesis.

Chapter 3 (page 23) shows how formal methods have been applied to the protocol
description. With the use of model checking techniques I tried to construct a realistic
formal model that is easy to understand by engineers, and may serve as a basis for
formal verification.

Chapter 4 (page 45) describes the verification process applied to the formalized
model. I will show which issues were encountered, the properties that have been
verified, and the results of the verification process.

Chapter 5 (page 55) describes a conformance test of a Shim6 implementation. If
this version of Shim6 is implemented conform the specification, it should suffer from
the same issues as our formalized model. If so, this indicates that formal methods
may reveal troubles that are easily overlooked and affect real implementations.

Chapter 6 (page 71) will summarize the conclusions I have drawn based upon the
work described in this thesis. I will also discuss some possible future work on the
subject of Shim6 verification and implementation.

Appendix A (page 73) provides a list of abbreviations used in this thesis.

12 1. Introduction

Appendix B (page 77) shows some design issues for the Shim6 model. First of
all, some modifications have been made in order to satisfy the properties. Second,
abstractions have been applied to allow the verification of properties. I will show
how these adjustments are made and why they are allowed.

Chapter 2

Shim6

Multiple efforts have been started to deploy a new multihoming solution that is
scalable, can deal with IPv6 addresses and preferably makes no use of PI space.
There are two main categories that can be classified: routing-oriented solutions and
host-centric solutions. The currently used routing-oriented multihoming approach
can also be used in an IPv6 context. As with IPv4, no modifications to the IPv6
architecture are required. This approach generally meets all the goals for multi-
homing approaches as listed by Abley, et al. [Abl03], except for scalability. Hence,
it is no realistic solution. Instead of placing the burden on the global routing tables,
host-centric solutions perform the route selection procedure at the end points of
the network. They make use of the two semantics of IP addresses. First, an address
uniquely identifies an end point in a network. Second, an address acts as a forward-
ing address (locator) determining the route of an packet. Route selection becomes
an outcome of the process of selecting an address for the destination host at the end
point, rather than letting routers select the best path, presenting a more scalable
solution than routing-oriented solutions.

There are currently three main host-centric efforts [Sav05]: Mobile IPv6, Host Iden-
tity Protocol and Site Multihoming by IPv6 Intermediation.

Mobile IPv6

Mobile IPv6 (MIPv6) is designed to support Internet connection for wireless devices
such as mobile phones or notebooks. These devices can change the point of attach-
ment to the network. A way to approach the multihoming problem is to compare
the situation with such mobile nodes. Nodes that are moving around in the network
should remain reachable. Preserving communications through movement could be
well compared with preserving communications through outages in multihomed en-
vironments. In both cases it must be possible to dynamically changing the paths
used while communication maintains unchanged. The MIPv6 protocol [Joh04] al-
ready provides this support for mobile nodes, this approach also might be a good
solution for multihoming.

13

14 2. Shim6

MIPv6 separates the end point identifier and locator roles of an IP address. It uses
the end point identifier as a stable identifier for the mobile node (referred to as the
Home Address (HoA)). This identifier is dynamically mapped to a locator (Care-
of Address (CoA)) that corresponds to the current attachment point within the
network. A Home Agent is placed in the Home Network to forward packets that are
addressed to the HoA, to the current location of the mobile node, as specified by
the CoA. After the node moves, it informs the Home Agent about its new location.
The mapping between the HoA and the CoA is announced using Binding Update
(BU) messages.

The problem here is that the BU message could be forged. The corresponding node
may be notified of the new malicious node, and will forward its messages to the
attacker. To prevent this, the Return Routeability procedure is designed to allow
a correspondent node to authorize the mobile node. By checking if the node is
reachable at its HoA and CoA, it can be safely said that the mobile node is really
at the foreign link and has a valid registration for the HoA. The lifetime of the
binding that is created in the correspondent node using the Return Routeability
procedure is limited to seven minutes, in order to make the attack more difficult by
periodically checking the validity of the identity.

While the MIPv6 security design could address these redirection threats, unfortu-
nately this procedure cannot be applied to multihoming. MIPv6 relies on HoA’s
being always reachable, but multihoming design cannot assume this. Consider a
link failure at the HoA address. With multihoming, an alternative address is used.
The external host is notified of this fact by a BU message. This BU message has to
be validated using authorization information obtained through the Return Route-
ability procedure. The new address pair would only be valid for seven minutes. It
is not possible to acquire new authorization information, because communication
with the HoA is required, which is no longer reachable.

Host Identity Protocol

The Host Identity Protocol (HIP) enables a strong authentication between hosts at
TCP/IP stack level. The protocol is not directly intended for multihoming purposes,
but can be used for these kind of scenarios. The HIP architecture introduces a new
name space, the Host Identity. HIP would be inserted between the network and
transport layers, so that the transport layer can be provided with stable end point
identifiers in case of a link failure, and the network layer can transparently change
between locators that are linked to the Host Identity.

Unfortunately, introducing a new name space is one major disadvantage of HIP.
Applications should use the Host Identity instead of IP addresses. TCP connections
and UDP associations are no longer bound to IP addresses but to Host Identities.
For multihoming and even communication to work, this means that all other hosts
should implement this protocol.

Site Multihoming by IPv6 Intermediation (Shim6)

The IETF started a working group in order to develop a host based multihoming
solution. They propose a new sub-layer on the network stack of a host’s device. It
will enable multihomed hosts to use a set of provider assigned, IPv6 addresses and
switch between them transparent for the transport and application layer protocols.

2.1. Architecture 15

The solution is based on HIP, but the benefit of Shim6 is that changes in the
addresses that are used below the shim, are invisible to the upper layer. The fixed
address is referred to as upper layer identifier, but does not require a different
binding to a new name space. Instead, Shim6 resolves the mapping within the IP
protocol.

2.1 Architecture

The mapping of identifiers to locators and backwards can be carried out at different
places. In case of a local multihomed network, the process can be performed at the
site-exit router. In this case, the host is unaware of the multihomed environment.
However, the design intent of Shim6 is to ensure handling path failures indepen-
dently of the number of IP addresses available to the two communicating hosts,
and independently of which host detects the failure condition. This means that the
identifier/locator split needs to be performed at the host. This can be done at the
transport layer or at the network layer1. Multihoming at transport level enables ap-
plications to be aware of the currently used address pair. This requires adaptations
of applications and transport layer. Besides, addressing is not considered a task for
applications. This needs to be done at the network layer. It is suggested that Shim6
operates at this level, within the IP protocol. This is illustrated in Fig. 2.12. Placing
the shim at this location, makes the solution transparent and directly usable in a
non-multihomed environment without any other adaptations.

Figure 2.1: Placement of the Shim6 layer in the network stack

Normally, the IP protocol uses the addresses from the transport session as IPv6 ad-
dresses. They are considered to be the end points, also called upper layer identifiers
(ULID pair). IP constructs a packet consisting of the transport data and the ULID
address pair. Additional extension headers may be added. If Shim6 holds informa-
tion about the default address pair, the host may decide to replace the ULID pair
by a different locator pair. Address mapping occurs if there exists multihoming in-
formation and the locator pair differs from the ULID pair. This indicates that there

1. Layers refer to the levels of the Open Systems Interconnection Basic Reference Model (OSI
Model), an abstract description for computer network protocol design.
2. Picture is taken from the Shim6 website, http://www.shim6.org.

16 2. Shim6

was a problem with the default address pair, and the packet needs to be rewritten.
A Shim6 extension header is added to the packet, enabling the receiver to retrieve
the correct ULID pair. An IPv6 packet may contain other extension headers. If
more than one extension header is used, a specific header order must be used:

• IPv6 header

• Hop-by-Hop Options header

• Destination Options header

• Routing header

• Shim6 header

• Fragment header

• Authentication header

• Encapsulating Security Payload header

• Destination Options header

• Upper Layer header

After the IPv6 header, the routing related headers (Hop-by-Hop Options header
and the Routing header) are added. They are placed before the Shim6 data be-
cause routers should be able to evaluate those headers, without decoding the Shim6
header. The Fragment header should be placed after the Shim6 header, because
when reassembly is carried out at the destination, all source and destination ad-
dresses must be identical. The fragments could have been sent over multiple paths,
potentially with different source and destination locators. Thus, the locators should
be replaced by the ULID pair before defragmenting occurs. Security related head-
ers, such as the Authentication header and the Encrypted Security Payload header,
are also below the Shim6 header. This way, IPSec can be made unaware of locator
changes, just like the upper layer can be unaware of locator changes. IPSec security
associations remain stable, even if the locators are changing.

2.2 Protocol overview

The Shim6 protocol operates in several phases over time. It makes use of the fol-
lowing concepts [Nor06]:

Initial contact Typically, communication starts with an application on host A
that wishes to contact an application on host B. For short communications,
it may not be worth the overhead of setting up a multihomed environment,
since the chance that a failure occurs is very small. Multihoming pays off only
for long term communications, and should be negotiated for these types of
communications only. Currently, there is no action needed by Shim6.

Context establishment At some point in time, one of the hosts determines
that it is useful to set up the multihomed environment. For example, more
than 50 packets have already been sent or received. Shim6 initiates a 4-way
context establishment. This way, A and B will exchange their list of locators
to each other. This information is stored in a local multihomed environment,
also called the Shim6 context. If the context establishment fails, the initiator
will assume that the other party does not support Shim6. Standard unicast
communication can be continued.

2.2. Protocol overview 17

Failure detection and locator pair exploration Shim6 maintains information
of incoming and outgoing messages. This helps to detect a possible link failure.
In case of a failure, one host needs to probe different alternate locator pairs
until a new, working address pair is found.

Packet rewriting If a new working locator pair has been found, Shim6 will rewrite
the packets on transmit. The packets are tagged with the Shim6 payload
extension header, which contains the receiver’s context tag. The receiver can
use this context tag to find the context state that will indicate which addresses
to place in the IPv6 header, before passing the packet to the upper layer
protocol (ULP).

Garbage collection When Shim6 thinks that a context is no longer used, it
can clean up the state. The context establishment protocol defines a recovery
message to signal when there is no context state, so that premature garbage
collection or complete state loss (after a crash or reboot) can be recovered.

This algorithm provides redundancy to the hosts, but cannot solve traffic engineer-
ing and load sharing. Both features can not yet be realized because the fundamental
Shim6 mechanism uses a single current locator pair for each remote host. To solve
this, context forking is introduced. With context forking, an ULP can specify that a
context for let’s say the ULID pair (A1, B2) should be forked in two contexts. The
two contexts are tagged with a Forked Instance Identifier (FII): the default context
has FII zero, the new context will get a non-zero value. An ULP that is aware of the
Shim6 context, can share the data over both contexts or choose a preferred context.

2.2.1 Context establishment exchange

The context establishment exchange allows hosts to set up a multihomed environ-
ment, or recover from lost contexts. Shim6 contexts are established using a 4-way
exchange. This 4-way exchange counters a possible denial of service (DoS) attack.
Such an attack can be carried out similarly to a TCP SYN flooding attack [Edd06].
To avoid this attack, the responder will only create a context after the third packet.

The peer’s locators might need to be verified during context establishment. The
host that owns the ULID must also be the host that uses the relevant locator.
Techniques to create hash based addresses (HBA, [Bag05]) or cryptographically
generated addresses (CGA, [Aur05]) can be used to do such verification. Another
important verification is that the host is indeed reachable at the claimed locator.
The latter verification is needed before packets are sent to the locator, the first
one must be performed before packets can be received by the peer with the source
locator in question.

There are seven states that the Shim6 protocol can reach during context estab-
lishment: IDLE (at state machine start), I1-SENT (initiating context establish-
ment exchange), I2-SENT (initiator waiting to complete context establishment ex-
change), ESTABLISHED (context is established), E-FAILED (context establish-
ment exchange failed), NO-SUPPORT (ICMP3 Unrecognized Next Header Type is
received, indicating that Shim6 is not supported at the receiver) and I2BIS-SENT

3. The Internet Control Message Protocol (ICMP) is used to retrieve information about the health
of the network and reports errors about packets that could not be processed properly [Con98].

18 2. Shim6

(potential context loss at the receiver is detected). There are three different types
of establishment: Normal context establishment, concurrent context establishment
and context recovery. With normal context establishment, one host is the initiator
of the exchange and the other acts as the responder. With concurrent context es-
tablishment, both hosts want to initiate the exchange. Context recovery is carried
out if a context of one host was removed prematurely.

2.2.1.1 Normal context establishment

Normally, the context establishment exchange consists of four messages, as shown
in Fig. 2.2. The figure illustrates a communication exchange between host A and
host B. In this figure, A will be the initiator of the exchange and B will act as the
responder. Every transmitted packet is indicated by a line number. For example,
the first packet sent is indicated with (1). If A sends a packet to B, this is denoted
with A → B : packet. The packet consists of different elements, separated by two
pipelines ||. At the start of the exchange, both hosts will be in the state IDLE.

The first message I1, is the initial message for context establishment. It contains the
initiator context tag (CT (A)) that A has allocated for the context. Furthermore, it
contains a nonce to ensure the message is not replayed. Also, some options can be
set to facilitate the protocol. No state will be created yet at the receiver. However, A
will set its state to I1-SENT, to track the progress of the exchange. A can retransmit
I1 if it does not receive a response on time. After a number of maximum tries, it
may assume that the peer does not implement the Shim6 protocol. If it receives
back an ICMP error “Unrecognized Next Header”, and the included packet is the
I1 message, it is a more reliable indication that the other end does not implement
Shim6.

(1) A → B : I1 || CT (A) || Nonce1(A) || options
(2) B → A : R1 || Nonce1(A) || Nonce1(B) || options
(3) A → B : I2 || CT (A) || Nonce2(A) || Nonce1(B) || options
(4) B → A : R2 || CT (B) || Nonce2(A) || options

Figure 2.2: Normal context establishment

The second message is used in response to the I1 message. B replies with the
nonce of A and a new nonce to challenge the initiator. The options field contains
a responder validator, to verify that the upcoming I2 message is indeed sent in
response to this R1 message and that the parameters in the expected message are
the same as those in the I1 message. B still does not create a state.

After checking the initiator’s nonce, A will send the third message in the context
establishment exchange. This message contains again the context tag of A. Fur-
thermore, the response to the nonce of B, a new nonce that should be repeated in
message R2, the responder validator from the R1 message and the locator list of A
are included. After sending the message, A sets its state to I2-SENT.

B responds to the I2 message and sets its state to ESTABLISHED. The response
R2 contains the new initiator’s nonce, the context tag of B and the locator list of
B. When A receives this message, it also updates its state to ESTABLISHED.

2.2. Protocol overview 19

The following options are defined:

ULID pair When the IPv6 source and destination addresses in the header do not
match the ULID pair, this option must be included. This option contributes
to the recovery of a lost context.

Forked Instance Identifier (FII) When another instance of an existing context
with the same ULID pair is being created, this option is included to distinguish
this new instance from the existing one. The FII is needed for context forking.

Responder Validator To verify that the message is indeed sent in response to
a R1 message and that the parameters in the upcoming I2 message are the
same as those in the I1 message.

Locator list Optionally set in the I2 message when the initiator immediately
wishes to tell the responder its list of locators. When sent, required HBA or
CGA information for verification must also be included.

Locator preferences Optionally set in the I2 message when the locators do not
all have equal preferences.

CGA parameter data structure Included when the locator list is set, in order
to let the receiver verify the locator list.

CGA signature Included when some of the locators in the list use CGA (and
not HBA) for verification.

2.2.1.2 Concurrent context establishment

Normal context establishment is only one way to set up a multihomed environment.
It is also possible that both hosts are trying to initiate a context for the same ULID
pair. In this case, we might get crossing I1 messages. Both hosts will act as initiator
and set their state to I1-SENT. Because after message (2), both hosts know they
already sent their context tag and a nonce to prevent replay attacks, they can
skip the I2 and R1 messages, and establishing the context by responding with R2
messages. The R2 message must contain the sender’s context tag and the response
nonce that was in the initiate message of the other party. Fig. 2.3 shows how this
exchange works.

(1) A → B : I1 || CT (A) || Nonce1(A) || options
(2) B → A : I1 || CT (B) || Nonce1(B) || options
(3) A → B : R2 || CT (A) || Nonce1(B) || options
(4) B → A : R2 || CT (B) || Nonce1(A) || options

Figure 2.3: Concurrent context establishment: crossing I1 messages

Another possibility is that a responder host has received an I1 message and trans-
mitted a R1 message. This type of establishment is shown in Fig. 2.4. After message
(2), B is waiting for an I2 message, but has no state to remember this. In message
(3), It is triggered to sent an I1 message itself, now acting as an initiator as well.
Just after sending, the I2 message would finally arrive, resulting in an established
context for this host. B sends the final message R2 to the other end, so that it also
establishes a context. The sixth message in this exchange is triggered because B
transmitted an I1 message (message (3)), and does not have any effect.

20 2. Shim6

(1) A → B : I1 || CT (A) || Nonce1(A) || options
(2) B → A : R1 || Nonce1(A) || Nonce1(B) || options

(3) B → A : I1 || CT (B) || Nonce2(B) || options
(4) A → B : I2 || CT (A) || Nonce1(B) || Nonce2(A) || options
(5) B → A : R2 || CT (B) || Nonce2(A) || options
(6) A → B : R2 || CT (A) || Nonce2(B) || options

Figure 2.4: Concurrent context establishment: crossing I1 and I2 messages

2.2.1.3 Context recovery

The exact mechanism to determine when the context state is no longer used is
implementation dependent. For example, it might use the existence of ULP state
combined with a timer to determine if a state is likely to be no longer used. This
means that a situation can occur where one host is still using the context state and
the other host does not. If the garbage collection occurred too early, the context
should be recovered. There are two possible exchanges that can recover the context.
In the first situation, the host that still uses the context state, continues with
communication. For example, it probes for alternate locator pairs. This situation is
shown in Fig. 2.5.

(1) A → B : payload || CT (P)
(2) B → A : R1bis || CT (P) || Nonce1(B) || options
(3) A → B : I2bis || CT (A) || Nonce1(A) || Nonce1(B) || CT (P) || options
(4) B → A : R2 || CT (B) || Nonce1(A) || options

Figure 2.5: Context loss at receiver

The receiver sees a Shim6 message for which it has no context for the received
context tag. It notifies the sender by sending a R1bis message. A reduced context
establishment is initiated. The R1bis message contains the relevant context tag,
and is completed with a nonce and the responder validator option. Host A receives
the R1bis message and continues the re-establishment by sending an I2bis message
containing the received context tag, its own allocated context tag, the responding
nonce, a new nonce and possibly some options again. When receiving the R1bis
message, A knows the current context is not longer applicable, so he sets its state
from ESTABLISHED to I2BIS-SENT. The context re-establishment is finalized
with an R2 message transmitted by B, and both ends have an established context
again.

It is also possible that the host without context state tries to create a new one (for
the same ULID pair), by sending an I1 message. The other host finds an existing
context, but its allocated context tag does not match. This is referred to as context
confusion. In this situation, it leaves the old context established unchanged, but
continues a 4-way context establishment with the initiator, like in Fig. 2.2. When
receiving the I2 message, it removes the old context and accepts the new context
associated with the I2 message.

2.2. Protocol overview 21

2.2.2 Failure detection and locator pair exploration

Failure detection is about detecting reachability of a currently used address pair be-
tween two hosts [Ark06]. Reachability is determined by making sure that whenever
there is data traffic in one direction, there is also traffic in the other direction. Lo-
cator pair exploration is about picking a new address pair to be used when a failure
occurs. Failures are relatively infrequent, so the current locator pair that worked a
few seconds ago is very likely to be still operational. The mechanism should only in-
voke heavier exploration when there is a suspected failure. This algorithm is referred
to as Forced Bidirectional Detection:

• The algorithm is started after a successful context establishment. The context
is considered operational, that is, the currently used locator pair is considered
to be working. The algorithm makes use of two timers: (1) a SEND timer to
reflect how long ago the last packet was sent, and (2) a KEEPALIVE timer
to reflect how long ago the last packet was received. These two timers are
mutually exclusive, so at most one timer is running at the time.

• Whenever outgoing data packets are generated that are part of a Shim6 con-
text, the SEND timer is started. If there is a KEEPALIVE timer running, it
is stopped.

• Whenever incoming data packets are received, the SEND timer is stopped
and the KEEPALIVE timer is started.

• If the KEEPALIVE timer exceeds the keepalive timeout, a keepalive message
will be transmitted. A host may send this message sooner (depending on im-
plementation considerations), but the average time after a keepalive message
is sent must be at least keepalivetimeout/2. Note that if data packets are
flowing in both directions, there is no need to keep the connection alive with
keepalive messages. No additional keepalive messages are sent by the host,
unless a new data packet is received.

• If a keepalive message was received, the timer SEND is stopped. If both ends
have sent a keepalive message, the session is idle.

• If the SEND timer exceeds the send timeout, a locator pair exploration is
started. The send timeout must be larger than the keepalive timeout to ac-
commodate for lost keepalives and variations in round trip times.

This reachability detection is a form of failure detection. There are two more forms
of failure detection that are performed before reachability detection: Tracking local
information and tracking remote peer status [Ark06]. Tracking local information
consists of using reachability information about the local router as an input. Pro-
tocols like Neighbor Discovery, Neighbor Unreachability Detection, Address Auto-
configuration and DHCP can be used to discover and monitor available addresses
within the local scope. Tracking remote peer status is important to verify if the
peer’s currently used address is still in use. If both detection mechanisms succeed,
reachability detection is started.

If a failure is detected, an exploration process attempts to find another operational
locator pair so that the communication can continue. The party that first detects
the problem (because the send timeout expired) starts a process where it sends
probe messages to the other party, trying different address pairs each time, until
it gets an probe message back. This responding probe message confirms that the
initial probe message has arrived and that the other party can reach the host that

22 2. Shim6

detected the problem. The initiator of the exploration process must send another
probe message for confirmation to the other host.

(1) A → B : payload || (A1, B1)
(2) B → A : payload || (B1, A1)
Link (A1,B1) failure
(3) A → − : payload || (A1, B1)

(4) B → A : probe || Id(p) || Exploring || (B1, A1)
(5) A → − : probe || Id(q) || InboundOK(p) || (A1, B1)
(6) A → B : probe || Id(r) || InboundOK(p) || (A1, B2)
(7) B → A : probe || Id(s) || Operational(r) || (B1, A1)
(8) A → B : payload || (A1, B2)
(9) B → A : payload || (B1, A1)

Figure 2.6: Link (A1, B1) failure detected by host B

A failure scenario is given in Fig. 2.6, where host B detects a problem and tries
to probe a new locator pair. B sets its SEND timer after sending the payload in
message (2). Right after that, the link (A1, B1) that is used by host A fails. B does
not see new packets arrive anymore. Note that it will not send a keepalive message,
because it transmitted an outgoing data packet. It may send more outgoing packets.
When the Send Timeout expires, B sends a complaint that is is not receiving any
data packets (message (4)).

In this example, the link (B1, A1) is still working and the probe message will get
to A. The message is tagged with an identifier p and tells that B does not get data
packets from A. Host A realizes that it needs to start the exploration and sends
a probe message back. In the example, this message is tagged with the identifier
q and tells B that A received the probe message p. Unfortunately, the link (A1,
B1) is not operational at the moment and the message is not delivered. A keeps
retransmitting probe messages, until it gets a probe message back. Note that B in
the meantime also could have retransmitted his probe messages. In this example, the
second probe packet tagged with identifier r (message (6)) is received by B. Because
the link (B1, A1) still works, B responds on this link with the probe message p,
this time telling A that he received the probe message r. Now A knows that link
(A1, B2) is operational and the communication can continue in message (8) and (9)
using the links (A1, B2) and (B1, A1).

Detecting failures and the exploration for a new locator pair is called the reachability
protocol (REAP). Context establishment and REAP are considered the two most
important algorithms for Shim6.

Chapter 3

Formal methods applied to Shim6

In order to verify critical parts of the Shim6 protocol draft specification, it should
be described using a formal specification language. I have used Uppaal [Beh04] to
do so. Uppaal is an integrated tool environment for specification, validation and
verification of real time systems modeled as networks of timed automata [Alu94].
Timed automata are finite state machines (FSMs) supplied with clocks. The tool
is (1) able to generate a graphical representation of the syntax for FSMs in combi-
nation with C-like syntax, (2) it allows you to specify timing constraints and (3) it
supports simulation and model checking. These are three important properties that
are useful when modeling network protocols.

A system in Uppaal is composed of one or more processes, each modeled as an
automaton. An automaton consists of a set of locations and transitions. Transitions
are used to jump between locations and can be utilized with four properties:

a. Using the select statement, we can nondeterministically bind a value to an
identifier. For example, the statement x:int[1,m] binds a value in the interval
[1,m] to the variable x. This means that there is an instance of the transition
for each number in this interval.

b. A transition can be utilized with a guard. A guard is a condition on variables
and clocks, that have to be satisfied before the transition can be taken.

c. The synchronization mechanism allows two processes to take a transition
at the same time. A synchronization channel example, will have an output
transition in one process containing example!, and an input transition in
another process with example?. The input transition is taken if and only if
the output transition is taken.

d. When taking a transition, some update actions are possible. Variables can be
assigned a value or clocks can be (re)set. The updates in an output transition
will be executed before the assignments in an input transition. This means
that variables that are assigned in an output transition can be used in the
corresponding input transition.

Fig. 3.1 shows an example Uppaal automaton. It contains two locations and one
transition. The transition is utilized with all possible properties: a select statement
val:int that nondeterministically selects an integer, a guard val>4 that ensures

23

24 3. Formal methods applied to Shim6

val:int
val>4
sync!
new=val

Figure 3.1: An example Uppaal automaton

the value of val is larger than 4, a synchronization channel sync! and an update
action new=val that assigns the value of val to the variable new.

Locations can be supplied with invariants. An invariant states an expression that
must always be true in that location. For example, if location P has an invariant
x<=3 (x being a clock), then the process may not stay longer than three time units
in P. A location may be labeled as urgent, which means that it has a designated
clock y, and contains the invariant y<=0. Time may not progress in an urgent state.
A committed location is even more restrictive. When one of the automata is in a
committed location, time may not progress and the next transition has to start
from a committed location (from either this or another automaton in the network).

Taking these features into account along with my experience with Uppaal and the
lively research activity for the tool at the Radboud University Nijmegen convinced
me that this was the right model checker for modeling network protocols, Shim6 in
specific. The most critical parts of Shim6 are the context establishment exchange
and the reachability protocol. Context establishment exchange is used to set up a
multihomed context with another device and can also be used for context recovery.
The reachability protocol is used to detect a failure in a currently used address pair
and selecting a new, working address pair.

3.1 Modeling context establishment

The Shim6 draft [Nor06] assumes that Shim6 can provide multihoming between two
communicating hosts. A host can have multiple multihoming sessions with different
hosts. Our model assumes h hosts with h=2. This constant variable may be set to a
larger value in order to “plugin” additional hosts. A local host maintains at most
one Shim6 context per remote host. The draft assumes that a dispatcher delivers
incoming packets to context that it belongs to. Host failure, such as a reboot or
crash, is not modeled. Host failure means that the host has lost its contexts and
is no longer able to send. However, the model allows a host to voluntary stop the
transmission of messages. This will eventually lead to the garbage collection of
the context. A host that stops sending messages and removes its context can be
considered the same behavior as with host failure.

The behavior of each host is modeled by three automata: Context, Dispatcher and
ULP. Automaton Context models the establishment of a Shim6 context, Dispatcher
delivers the incoming messages to the corresponding context and the upper layer
protocol ULP is concerned with sending payload packets. All three automata are
parameterized with a host identifier HostType. A host can maintain multiple con-
texts, so the automaton Context is parameterized with an additional HostType that

3.1. Modeling context establishment 25

identifies the remote host of this context. In reality, the context is identified by a
context tag, which can have a value between 0 and 247. But because “The context
state is maintained per remote ULID i.e. approximately per peer host, and not at
any finer granularity” ([page 10, section 1.6] of the draft), our model identifies the
context with just the remote host identifier.

HostType is defined as

typedef scalar[h] HostType;

and denotes the set {0, ..., h − 1}. With a scalar set, the behavior of a model is in-
variant under arbitrary permutations of the elements of a scalar set [Dil93], [Hen03].
By defining our hosts as a scalar set instead of a subrange, Uppaal knows that all
hosts are fully symmetric, providing the ability to reduce the state space.

Figure 3.2: Overview of the communication between the host automata and network
automaton

The three automata that form a host can communicate with an automaton that
represents the network. The network is used to send packets from one host to
another. The three automata can also speak with each other mutually. Fig. 3.2
shows how the automata communicate. The automata ULP, Context and Dispatcher

can send packets to the network with msg_send. Every automata deals with different
types of messages. The ULP will only transmit payload packets, the context deals
with the sending of initiator Shim6 messages and the dispatcher handles incoming
messages and may reply to these with responder Shim6 messages. The Dispatcher

is the only automata that receives packets through msg_receive. It will determine
the appropriate action and, if necessary, update the context.

3.1.1 The network

Shim6 makes the following assumptions about the network [page 16, section 3]:

The shim6 approach assumes that there are no IPv6-to-IPv6 NATs on the
paths, i.e., that the two ends can exchange their own notion of their IPv6
addresses and that those addresses will also make sense to their peer.

IPv6 [Dee98] is the successor of IPv4. Although IPv6 is not yet widely deployed, all
newly deployed applications consider IPv6. The Internet Protocol is used to provide
addressing information to data packets. This also applies to Shim6 data packets.
For our model, only the source and destination addresses are relevant. The draft

26 3. Formal methods applied to Shim6

also only considers unicast messages. This allows us to leave out extension headers
that provide multicast and anycast addresses.

For the Shim6 environment, an IPv6 packet can be modeled as:

typedef struct {

IPv6Type src;

IPv6Type dest;

shim6_packet shim6;

} IPv6_packet;

The IPv6 packet data is followed by some Shim6 related data. Every Shim6 message
contains a bit P to distinguish payload packets from control messages [page 24,
chapter 5]. If the message is a payload packet, the Shim6 header is only supplied
with a context tag, so that the receiver can identify the corresponding context. If
the message is a control message, the header consists of a type field and some type
specific fields. In our model, the P bit is combined with the type field of a control
message. If P=1, the variable type is set to PAYLOAD. If P=0, the variable type is set
to a type value as listed in the draft [page 26, section 5.3]. Two additional values,
NO_SHIM and ICMP, are defined. The value NO_SHIM specifies there was no Shim6
related data, and the value ICMP indicates a special ICMP message (type 4, code 1)
that needs to be delivered to the corresponding context. Because Uppaal does not
have C-like unions or pointers, our Shim6 packet is a list of possible data structures,
with type indicating the structure in use:

typedef struct {

Type type;

i1_packet i1;

r1_packet r1;

i2_packet i2;

r2_packet r2;

r1bis_packet r1bis;

i2bis_packet i2bis;

updreq_packet updreq;

updack_packet updack;

payload_packet payload;

icmp_packet icmp;

} shim6_packet;

The underlying network can be modeled as a set of n identical Network automata:

typedef scalar[n] NetworkType;

Each automaton is parametrized by an element from this type. The automata can
pass through packets by using synchronization channels. A global packet p is defined
that is generated in the assignments of an output transition (denoted with !), which
is then picked up by an input transition (denoted with ?). Each Network automata
takes care of handling one packet at a time. This allows us to model race conditions,
where messages transmitted later in time can overtake earlier transmitted messages.
With n automata, n messages can be in transit at the same time. In reality, n can
be a very large number. To reduce state space, we keep the number of Network

automata as low as possible.

3.1. Modeling context establishment 27

delivering
z < 2

not failed[buff.src][buff.dest]
msg_receive[buff.dest]!
p = buff

failed[buff.src][buff.dest]

msg_send?
buff = p, z = 0

Figure 3.3: Automaton Network[j]

The behavior of the network is illustrated in Fig. 3.3. When a host decides to
transmit a message, it communicates the data via the msg_send synchronization
channel. The automaton moves to the delivering location. While taking the
transition, the IPv6 packet p is stored into the local network buffer buff and
a local clock z is reset to zero. Delivery is only possible if the path link is still
working: not failed[buff.src][buff.dest]. With the synchronization channel
msg_receive[buff.dest], the message is delivered to the correct destination. The
Shim6 draft does not inform about a possible message delay, but the failure detec-
tion draft [Ark06] assumes a maximum one-way delay of 2 seconds. This is realized
by adding an invariant z<2 to the location delivering.

3.1.2 The context

The automaton Context maintains the progress of context establishment and recov-
ery. A context maintains state variables. The draft proposes a conceptual model of
a context structure [page 50, chapter 6]. However, the textual part is inconsistent
with the table included in that very same chapter. The table in question introduces
new variables that were not mentioned earlier in the text, such as the initiator
nonce, the responder nonce and the R1bis context tag. These new variables seem
to be necessary for retransmissions during the context establishment, so they are
included in our model.

Each context variable is parameterized with two host identifiers (from the local host
and the peer), to identify the corresponding Context automaton. This is allowed,
since every context belongs to one remote host. One disadvantage of this approach
is that h superfluous contexts are created. Every local host also maintains a context
for itself. But if we parameterize the context variables with a context tag, we still
would have to deal with the h unused contexts. This is because we need one special
context tag per host to identify a context that has not yet been allocated.

The Context automaton is illustrated in Fig. 3.4. The context establishment ex-
change starts by sending an I1 message [page 59, section 7.7]:

When the shim layer decides to setup a context for a ULID pair, it starts
by allocating and initializing the context state for its end. As part of this it
assigns a random context tag to the context that is not being used as CT(local)
by any other context. Then the initiator can send an I1 message and set the
context state to I1-SENT. The I1 message MUST include the ULID pair;

28 3. Formal methods applied to Shim6

normally in the IPv6 source and destination fields. But if the ULID pair for
the context is not used as locator pair for the I1 message, then a ULID option
MUST be included in the I1 message.

Initially, the context is in the location idle. A boolean value heuristics[i][peer]
is used to identify if the shim layer decides to set up a context. If these heuristics
become true, the context jumps to the i1sent location, and allocates the relevant
context variables with the function allocate_ctx. The urgent broadcast channel
urg is used to ensure that the transition is taken as soon as it is enabled. The
number of I1 transmissions is set to zero with tries=0, and the clock y is set to
I1_TIMEOUT, so that the first I1 message is sent immediately. This is realized by
the invariant y<=I1_TIMEOUT in location i1sent. The message is created with the
function send_i1 and is passed on directly to the network.

If the host receives no valid response, it needs to retransmit I1 [page 60, section
7.8]:

If the host does not receive an I2 or R2 message in response to the I1
message after I1 TIMEOUT time, then it needs to retransmit the I1 message.

If, after I1 RETRIES MAX retransmissions, there is no response, then
most likely the peer does not implement the shim6 protocol, or there could be
a firewall that blocks the protocol. In this case it makes sense for the host to
remember to not try again to establish a context with that ULID. However, any
such negative caching should retained for at most NO R1 HOLDDOWN TIME,
to be able to later setup a context should the problem have been that the host
was not reachable at all when the shim tried to establish the context.

If the host receives an ICMP error with ”Unrecognized Next Header” type
(type 4, code 1) and the included packet is the I1 message it just sent, then this
is a more reliable indication that the peer ULID does not implement shim6.
Again, in this case, the host should remember to not try again to establish
a context with that ULID. Such negative caching should retained for at most
ICMP HOLDDOWN TIME, which should be significantly longer than the pre-
vious case.

The invariant y<=I1_TIMEOUT also forces the context to retransmit I1. The counter
tries is incremented to maintain the number of retransmissions. If tries >

I1_RETRIES_MAX and within I1_TIMEOUT still no valid response is received, the
context jumps to the location failed. The clock y is reset to zero and variable
to is set to NO_R1_HOLDDOWN_TIME. If the context is informed that an ICMP error
(type 4, code 1) is received, the context also jumps to failed, but now to is set to
ICMP_HOLDDOWN_TIME. After the timeout occurs, the context can be removed, that
is, it can be set to idle again. If a R1 message was received on time, the host will
continue the exchange by transmitting I2 [page 62, section 7.11]:

Upon the reception of an R1 message, the host extracts the Initiator Nonce
and the Locator Pair from the message (the latter from the source and desti-
nation fields in the IPv6 header). Next the host looks for an existing context
which matches the Initiator Nonce and where the locators are contained in
Ls(peer) and Ls(local), respectively. If no such context is found, then the R1
message is silently discarded. If such a context is found, then the host looks
at the state: If the state is I1-SENT, then it sends an I2 message as specified
below.

When the host sends an I2 message, then it includes the Responder Val-
idator option that was in the R1 message. The I2 message MUST include the
ULID pair; normally in the IPv6 source and destination fields. If a ULID-pair

3.1. Modeling context establishment 29

option was included in the I1 message then it MUST be included in the I2 mes-
sage as well. Besides, the I2 message contains an Initiator Nonce. This is not
required to be the same than the one included in the previous I1 message.

The context is notified of the receipt of R1 through synchronization channel
update[i][peer][I2SENT]?. Note that all outgoing transitions are guarded by
tries>0. This forces the host to send at least one I1 packet, before updating its
context. The clock is now set to I2_TIMEOUT, so that the I2 message is sent imme-
diately. The message is constructed in send_i2. All information is retrieved from
the context variables, except the responder nonce and responder validator, which
are copied from the triggering message. In addition, the host includes its locator
list.

I2 messages may also be retransmitted [page 63, section 7.12]:

If the initiator does not receive an R2 message after I2 TIMEOUT time
after sending an I2 message it MAY retransmit the I2 message, using binary
exponential backoff and randomized timers. The Responder Validator option
might have a limited lifetime, that is, the peer might reject Responder Val-
idator options that are older than VALIDATOR MIN LIFETIME to avoid
replay attacks. Thus the initiator SHOULD fall back to retransmitting the
I1 message when there is no R2 received after retransmitting the I2 message
I2 RETRIES MAX times.

Retransmissions of I2 messages occur similar to retransmissions of I1 messages.
Different is that if after I2_RETRIES_MAX no valid response is received, the context
should fall back to i1sent, instead of moving to failed. An implementation may
decide not to retransmit I2 messages. This is simulated by the transition that does
nothing else than reset the clock y. This way, the context state remains i2sent,
without the invariant of the location becoming unsatisfied.

The VALIDATOR_MIN_LIFETIME value is not modelled, since the behavior is not well-
explained in the draft. For instance, it is not clear how the responder can maintain
such a lifetime.

In the case of concurrent establishment, a context in location i1sent may receive
an I2 or I2bis message. In this case, the context jumps to established. In location
i2sent, the context can move to established on receipt of an R2 message [page 66,
section 7.16]:

If state is I1-SENT, I2-SENT, or I2BIS-SENT then the host performs
the following actions: If a CGA Parameter Data Structure (PDS) is included
in the message, then the host MUST verify that the actual PDS contained
in the message corresponds to the ULID(peer) as specified in Section 7.2. If
the verification fails, then the message is silently dropped. If the verification
succeeds, then the host records the information from the R2 message in the
context state; it records the peer’s locator set and CT(peer). The host SHOULD
perform the HBA/CGA verification of the peer’s locator set at this point in
time, as specified in Section 7.2. The host sets its state to ESTABLISHED.

The model abstracts from the CGA verification, so from i1sent, i2sent and
i2bissent, the context can immediately jump to established. The function
establish_ctx records the information from the R2 message. The context clock
is reset to zero. From now on, the clock y determines when to garbage collect the
context. When this clock reaches TEARDOWN_TIMEOUT, the context is triggered to be

30 3. Formal methods applied to Shim6

removed. According to the Shim6 draft, TEARDOWN_TIMEOUT should be set to 300
seconds [page 73, section 9]:

Thus it is RECOMMENDED that implementations minimize premature
teardown by observing the amount of traffic that is sent and received using the
context, and only after it appears quiescent, tear down the state. A reasonable
approach would be not to tear down a context until at least 5 minutes have
passed since the last message was sent or received using the context.

failed
y <= to

i2bissent
y <= I2BIS_TIMEOUT

established

ctx_clock[i][peer]
 <= TEARDOWN_TIMEOUT

i2sent
y <= I2_TIMEOUT

i1sent
y <= I1_TIMEOUT

idle

y = 0

y = 0

update[i][peer][ESTABLISHED]?
allocate_ctx(nonce_nil),
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

update[i][peer][ESTABLISHED]?
allocate_ctx(nonce_nil),
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

n:NonceType
n != nonce_nil

update[i][peer][I2BISSENT]?

recover_ctx(n),
y = 0,
tries = 0

ctx_clock[i][peer] >= TEARDOWN_TIMEOUT
teardown_ctx()

n:NonceType
n != nonce_nil and
tries > I2BIS_RETRIES_MAX and
y >= I2BIS_TIMEOUT
fallback_ctx(n),
y = 0,
tries = 0

tries <= I2BIS_RETRIES_MAX and
y >= I2BIS_TIMEOUT
msg_send!
send_i2bis(),
y = 0,
tries++

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0 n:NonceType

n != nonce_nil and
tries > I2_RETRIES_MAX and
y >= I2_TIMEOUT
fallback_ctx(n),
y = 0,
tries = 0

ctx_clock[i][peer] >= to
ctx_ULIDl[i][peer] = ipv6_nil,
ctx_ULIDp[i][peer] = ipv6_nil,
to = 0

tries > 0
update[i][peer][NOSUPPORT]?
fail_ctx(NOSUPPORT),
y = 0,
to = ICMP_HOLDDOWN_TIME

tries > I1_RETRIES_MAX and
y >= I1_TIMEOUT
fail_ctx(EFAILED),
y = 0,
to = NO_R1_HOLDDOWN_TIME

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

tries <= I2_RETRIES_MAX and
y >= I2_TIMEOUT
msg_send!
send_i2(),
y = 0,
tries++

n:NonceType
n != nonce_nil and
tries > 0
update[i][peer][I2SENT]?
update_ctx(n),
y = I2_TIMEOUT,
tries = 0

tries <= I1_RETRIES_MAX and
y >= I1_TIMEOUT
msg_send!
send_i1(),
y = 0,
tries++

n:NonceType
heuristics[i][peer] and
n != nonce_nil
urg!
allocate_ctx(n),
y = I1_TIMEOUT,
tries = 0

Figure 3.4: Automaton Context[i][peer]

3.1. Modeling context establishment 31

If a host has removed its context prematurely and it receives a Shim6 payload, its
context must be recovered. The host notifies the peer by sending a R1bis message.
When receiving such a message, the host detects that the peer context was lost and
sets its context state to I2BIS-SENT . The behavior in the location i2bissent is
almost identical to the behavior in i2sent. The difference is that the upper layer
with a context in i2bissent may still send Shim6 payload messages. On receipt of
a R2 message, the context can jump back to established.

Until now, we have seen the the behavior of a host that acts as initiator. If a
host acts as responder, it stays in idle until the receipt of an I2 or I2bis message.
The synchronization channel update[i][peer][ESTABLISHED]? is used to inform
the corresponding context. Upon this synchronization, the context jumps to the
established location. The context should behave identical when it is in the location
failed instead of idle.

3.1.3 The dispatcher

Determining which actions to fulfill when receiving a Shim6 control message is
elaborately discussed in chapter 7 of the draft. Basically, every message could result
in three possible actions: (1) updating a context, (2) resolving context confusion,
and (3) generating a reply message. But first, the host needs to look if there is a
context that corresponds to the incoming message [page 81, section 12.3]:

We assume that each shim context has its own state machine. We assume
that a dispatcher delivers incoming packets to the state machine that it belongs
to. Here we describe the rules used for the dispatcher to deliver packets to the
correct shim context state machine. There is one state machine per context
identified that is conceptually identified by ULID pair and Forked Instance
Identifier (which is zero by default), or identified by CT(local). However, the
detailed lookup rules are more complex, especially during context establish-
ment. Clearly, if the required context is not established, it will be in IDLE
state. During context establishment, the context is identified as follows:

- I1 packets: Deliver to the context associated with the ULID pair and the
Forked Instance Identifier.

- I2 packets: Deliver to the context associated with the ULID pair and the
Forked Instance Identifier.

- R1 packets: Deliver to the context with the locator pair included in the
packet and the Initiator nonce included in the packet (R1 does not contain
ULID pair nor the CT(local)). If no context exist with this locator pair and
Initiator nonce, then silently discard.

- R2 packets: Deliver to the context with the locator pair included in the
packet and the Initiator nonce included in the packet (R2 does not contain
ULID pair nor the CT(local)). If no context exists with this locator pair and
INIT nonce, then silently discard.

- R1bis packet: deliver to the context that has the locator pair and the
CT(peer) equal to the Packet Context Tag included in the R1bis packet.

- I2bis packets: Deliver to the context associated with the ULID pair and
the Forked Instance Identifier.

- Payload extension headers: Deliver to the context with CT(local) equal
to the Receiver Context Tag included in the packet.

- ICMP errors which contain a Shim6 payload extension header or other
shim control packet in the ”packet in error”: Use the ”packet in error” for dis-

32 3. Formal methods applied to Shim6

send != NO_SHIM and
p.shim6.type == I2bis
msg_send!
reply_I2bis(send, p)

n:NonceType
n != nonce_nil and
send != NO_SHIM and
p.shim6.type == I1
msg_send!
reply_I1(send, p, n)

send != NO_SHIM and
p.shim6.type == I2
msg_send!
reply_I2(send, p)

n:NonceType
n != nonce_nil and
send != NO_SHIM and
p.shim6.type == PAYLOAD
msg_send!
reply_payload(send, p, n)

send == NO_SHIM

goto != NOWHERE
update[i][peer][goto]!

goto == NOWHERE

ipv6 : IPv6Type
UseIP[ipv6] == i
msg_receive[ipv6]?
contextlookup()

Figure 3.5: Automaton Dispatcher[i]

patching as follows. Deliver to the context with CT(peer) equal to the Receiver
Context Tag, Lp(local) being the IPv6 source address, and Lp(peer) being the
IPv6 destination address.

These rules are implemented in the function contextlookup. Note that in our
model the context is identified by the peer host identifier. We do not need to find
the correct context, but we do need to verify that the relevant context variables are
set.

For example, an incoming I1 message is checked on its ULID pair and its FII:

if (p.shim6.type == I1) {

if (p.src == ctx_ULIDp[i][peer] and

p.dest == ctx_ULIDl[i][peer] and

p.shim6.i1.FII == ctx_FII[i][peer]) {

...

}

else if (ctx_state[i][peer] == IDLE or

ctx_state[i][peer] == EFAILED or

ctx_state[i][peer] == NOSUPPORT) {

...

}

}

The body of the second if and else statement (indicated by the dots) then fulfills

3.1. Modeling context establishment 33

the required actions. On receipt of a message, the dispatcher performs the context
lookup, as illustrated in Fig. 3.5. The function contextlookup sets two variables:
goto and send. The variable goto determines if the context state needs to be
updated, while send determines which message needs to be replied. When receiving
an I1 message, the host usually responds with R1 [page 60, section 7.9]:

If no state is found (i.e., the state is IDLE), then the host replies with a
R1 message as specified below.

If such a context exists in ESTABLISHED state, the host verifies that the
locator of the Initiator is included in Ls(peer). If the state exists in ESTAB-
LISHED state and the locators do not fall in the locator sets, then the host
replies with a R1 message as specified below.

If the state exists in ESTABLISHED state and the locators do fall in the
sets, then the host compares CT(peer) for the context with the CT contained
in the I1 message.

- If the context tags match, then this probably means that the R2 message
was lost and this I1 is a retransmission. In this case, the host replies with a
R2 message containing the information available for the existent context.

- If the context tags do not match, then it probably means that the Initiator
has lost the context information for this context and it is trying to establish
a new one for the same ULID-pair. In this case, the host replies with a R1
message as specified below.

If the state exists in other state (I1-SENT, I2-SENT, I2BIS-SENT), we
are in the situation of Concurrent context establishment described in Section
7.4. In this case, the host leaves CT(peer) unchanged, and replies with a R2
message. This completes the I1 processing, with the context state being un-
changed.

The body of the if statement can be implemented according to this described
behavior:

if (ctx_state[i][peer] == ESTABLISHED) {

if (ctx_Lsp[i][peer][p.src] and

p.shim6.i1.ct_init == ctx_CTp[i][peer])

send = R2;

else

send = R1;

}

else if (ctx_state[i][peer] == I1SENT or

ctx_state[i][peer] == I2SENT or

ctx_state[i][peer] == I2BISSENT)

send = R2;

else if (ctx_state[i][peer] == EFAILED

or ctx_state[i][peer] == NOSUPPORT)

send = R1;

In this example, only the variable send is set. This is because the receipt of I1
messages will never result in an update of the context. Depending on the context
state, the dispatcher will reply a R1 or R2 message. For every type of control
message, the draft describes the corresponding actions. Each type of control message
can be converted to Uppaal syntax similarly as we did for I1. Also, payload packets
might lead to a response [page 80, section 12.1]:

34 3. Formal methods applied to Shim6

The receiver extracts the context tag from the payload extension header,
and uses this to find a ULID-pair context. If no context is found, the receiver
SHOULD generate a R1bis message (see Section 7.17). Then, depending on
the state of the context:

- If ESTABLISHED: Proceed to process message.

- If I1-SENT, discard the message and stay in I1-SENT.

- If I2-SENT, then send R2 and proceed to process the message.

- If I2BIS-SENT, then send R2 and proceed to process the message.

This logic results in the following Uppaal code:

if (p.shim6.type == PAYLOAD) {

if (p.shim6.payload.ct_recv != ct_nil and

p.shim6.payload.ct_recv == ctx_CTl[i][peer]) {

if (ctx_state[i][peer] == ESTABLISHED)

ctx_clock[i][peer] = 0;

else if (ctx_state[i][peer] == I2SENT or

ctx_state[i][peer] == I2BISSENT) {

ctx_clock[i][peer] = 0;

send = R2;

}

else if (ctx_state[i][peer] == EFAILED or

ctx_state[i][peer] == NOSUPPORT)

send = R1bis;

}

else if (ctx_state[i][peer] == IDLE or

ctx_state[i][peer] == EFAILED or

ctx_state[i][peer] == NOSUPPORT)

send = R1bis;

}

}

Finally, the host must check if no context confusion occurred [page 65, section 7.15].
However, context confusion occurs if there are two or more contexts for the same
remote host. Since our model maintains exactly one context for each remote host,
we have already abstracted from context confusion.

3.1.4 The upper layer protocol

The layer above Shim6 is concerned with sending payloads. Fig. 3.6 displays the
automaton ULP[i], which specifies the sending of payload messages.

At this moment, the host is able to send payload packets. One goal of Shim6 is to
“Not require extra roundtrip up front to setup shim specific state. Instead allow the
upper layer traffic (e.g., TCP) to flow as normal and defer the setup of the shim
state until some number of packets have been exchanged.” [page 5, section 1.1]. We
also assume that the upper layer is not aware of the Shim6 layer, so context forking
is out of scope.

3.1. Modeling context establishment 35

dest:HostType
dest != i and
not heuristics[i][dest] and
ctx_state[i][dest] == IDLE
heuristics[i][dest] = true

dest : HostType
dest != i and
map2Lp(dest)
msg_send!
send_payload(dest)

Figure 3.6: Automaton ULP[i]

Sending of shim unaware payloads is not modeled. It does not contribute to the
context establishment exchange. Instead, at a certain point of time the host decides
to set the heuristic trigger by taking the left transition. It is proposed in the draft
that the Shim6 context is set up after receiving or sending 50 payload packets. Our
approach skips this proposal to avoid long simulation traces.

If the context establishment succeeds and there is need for locator mapping, the
host can transmit Shim6 enabled payloads by taking the right transition [page 78,
section 11]:

When there is no context state for the ULID pair on the sender, there is
no effect on how ULP packets are sent. If the host is using some heuristic
for determining when to perform a deferred context establishment, then the
host might need to do some accounting (count the number of packets sent and
received) even before there is a ULID-pair context.

If the context is not in ESTABLISHED or I2BIS-SENT state, then it there
is also no effect on how the ULP packets are sent. Only in the ESTABLISHED
and I2BIS-SENT states does the host have CT(peer) and Ls(peer) set.

If there is a ULID-pair context for the ULID pair, then the sender needs to
verify whether context uses the ULIDs as locators, that is, whether Lp(peer)
== ULID(peer) and Lp(local) == ULID(local).

If this is the case, then packets can be sent unmodified by the shim. If it is
not the case, then the logic in Section 11.1 will need to be used.

The right transition of the ULP automaton is guarded by the function map2Lp. This
ensures that only Shim6 enabled payloads are being transmitted:

bool map2Lp(HostType peer) {

if (ctx_state[i][peer] == ESTABLISHED or

ctx_state[i][peer] == I2BISSENT) {

return true;

}

return false;

}

Checking if the locator pair equals the ULID pair is not necessary, because update
messages and probe messages are not transmitted during context establishment, so
the locator pair will always be the ULID pair. This means that in this model only
Shim6 aware payload packets without a Shim6 header will be transmitted.

Section 11.1 continues:

When sending packets, if there is a ULID-pair context for the ULID pair,
and the ULID pair is no longer used as the locator pair, then the sender needs
to transform the packet. Apart from replacing the IPv6 source and destination

36 3. Formal methods applied to Shim6

fields with a locator pair, an 8-octet header is added so that the receiver can
find the context and inverse the transformation.

If there has been a failure causing a switch, and later the context switches
back to sending things using the ULID pair as the locator pair, then there is
no longer a need to do any packet transformation by the sender, hence there
is no need to include the 8-octet extension header.

First, the IP address fields are replaced. The IPv6 source address field
is set to Lp(local) and the destination address field is set to Lp(peer). The
inserted shim6 Payload extension header includes the peer’s context tag.

If there exists a context for the ULID pair, and the context is in state established
or i2bissent, the address fields may need to be replaced. When the ULID pair is
equal to the currently used locator pair, the packet does not need to be modified.
Otherwise, the logic of section 11.1 of the Shim6 document should be executed.
This can be translated into five assignments: the source field is assigned with the
local locator, the destination field is assigned with the peer locator, the type is set
to PAYLOAD to indicate a payload extension header, the receiver context tag is set
to the peer context tag, and the context clock is reset to zero, in order to let the
context know it is still being used. The function pzero clears the IPv6 packet p, to
make sure that all the irrelevant fields are empty:

void send_payload(HostType dest) {

pzero();

p.src = ctx_ULIDl[i][dest];

p.dest = ctx_ULIDp[i][dest];

p.shim6.type = PAYLOAD;

ctx_clock[i][dest] = 0;

if (ctx_ULIDl[i][peer] != ctx_Lpl[i][peer] or

ctx_ULIDp[i][peer] != ctx_Lpp[i][peer]) {

p.src = ctx_Lpl[i][dest];

p.dest = ctx_Lpp[i][dest];

p.shim6.payload.ct_recv = ctx_CTp[i][dest];

}

}

Receiving payloads at the upper layer is not modeled, since passing on payload
packets to the upper layer does not affect the behavior of the shim6 protocol.

3.1.5 Initializing the model

initialize()

Figure 3.7: Automaton Initializer

Before hosts are able to communicate, they need to be assigned IPv6 addresses:

typedef scalar[m] IPv6Type;

3.2. Adding REAP 37

Just like HostType,IPv6 addresses are also scalar sets. Scalar sets provide symmetry
reduction, but only permit restricted operations. With scalar sets, only assignment
and identity testing are allowed. But because both types are unordered, we cannot
simply assign IPv6 addresses to hosts. To provide every host of one or more IPv6
addresses, a new automaton Initializer is introduced. As illustrated in Fig. 3.7,
it consists of only one transition and two locations. Because the initial location is
committed, this transition will always be taken first, and exactly once. The transi-
tion calls the function initialize. In this function, each IPv6 address is assigned
to a list element. The same algorithm is used for host identifiers. This results in two
ordered lists, IP and Host. We now have created ordered scalar sets, and are now
able to assign addresses to our hosts:

for(j=0;j<m;j++) {

if (count >= h) {

ulid_done = true;

count = 0;

}

UseIP[IP[j]] = Host[count];

if (!ulid_done)

ULID[Host[count]] = IP[j];

count++;

}

First the variable count is verified to be smaller than the number of hosts, otherwise
an IPv6 address would be assigned to an undefined host. If count is greater, it
is reset. With UseIP[IP[j]] = Host[count], the actual assignment is fulfilled.
Finally, the first h addresses are defined as the upper layer identifiers of the hosts:
ULID[Host[count]]=IP[j].

The values for the timing constants [page 84, chapter 14] can be copied verbatim
in the Uppaal declarations section:

const int I1_RETRIES_MAX = 4;

const int I1_TIMEOUT = 4; // seconds

const int NO_R1_HOLDDOWN_TIME = 60; // seconds

const int ICMP_HOLDDOWN_TIME = 600; // seconds

const int I2_TIMEOUT = 4; // seconds

const int I2_RETRIES_MAX = 2;

const int I2BIS_TIMEOUT = 4; // seconds

const int I2BIS_RETRIES_MAX = 2;

const int VALIDATOR_MIN_LIFETIME = 30; // seconds

const int UPDATE_TIMEOUT = 4; // seconds

3.2 Adding REAP

When the context establishment exchange is executed successfully, REAP is started.
This is vital functionality that provides redundancy to your network connection and

38 3. Formal methods applied to Shim6

is therefore also a critical part of the Shim6 protocol. For this reason, formal methods
should also be applied to REAP. Preferably, it is integrated within the context
establishment model. Unfortunately, verification (described in the next chapter)
already revealed state space problems with the current model. That’s why I decided
to verify the two algorithms as two separate models. This is perfectly acceptable,
because both algorithms can perform independently.

Some automata of the context establishment model can be used for REAP as well.
The automaton Initializer that provides hosts with IP addresses, is also important
to REAP. Also, the Network automaton can be re-used for packet transmission. The
modeled network already has methods to check if the used path encountered a
problem, but the system does not yet provide ways to create a link failure. This was
not necessary for context establishment, but it is an important variable for failure
detection and new locator pair exploration. A new automaton Fail is introduced,
illustrated in Fig. 3.8. This automaton allows the system to fail a path that is valid
with respect to the address pairs. Valid address pairs do not contain the special IPv6
address ipv6_nil and assure that the two addresses are used by different hosts:
UseIP[in] != UseIP[out]. A link failure is created with failed[in][out]=true.
A simplification in this system is that links cannot fail more than once. In reality,
links can go down and recover quickly. A host might not even notice that there
was such a small problem. That is just why this simplification is made. We would
like to have the ability to verify that a host detects an occurring link failure. By
adding link recovery, it gets more complicated to identify the cases when a link
failure should or should not be detected.

in:IPv6Type,
out:IPv6Type
not failed[in][out] and
in != ipv6_nil and
out != ipv6_nil and
UseIP[in] != UseIP[out]
failed[in][out] = true

Figure 3.8: Automaton Fail

3.2.1 Failure detection and locator pair exploration

An established Shim6 context maintains reachability state and information and can
be implemented as a state machine. A host maintains exactly one reachability state
machine per Shim6 context. This is modeled by the automaton REAP. We continue
the use of a dispatcher that informs the state machine of incoming messages and
may send response messages. the REAP and Dispatcher automata form the behavior
of the host and are parameterized with the host identifier HostType.

The automaton Dispatcher is much simpler than the dispatcher of the context
establishment. Basically, it receives a message from the network, passes the message
on to the REAP automaton, and sends a message back if REAP generated a reply. In
case a reply message is needed, a global boolean sending is set to true, that is read
out by the dispatcher. The new dispatcher is shown in Fig. 3.9.

3.2. Adding REAP 39

sending
msg_send!

incoming[i]!not sending
pzero(p)

ipv6:IPv6Type
UseIP[ipv6] == i and
ipv6 != ipv6_nil
msg_receive[ipv6]?
sending = false,
sending_payload = false

Figure 3.9: Automaton Dispatcher[i]

The automaton REAP is illustrated in Fig. 3.10. It contains four locations: Operational,
Exploring, InboundOK and the initial location. In the location Operational, the
current address pair is assumed to be working. In the location Exploring, the
host has currently not seen any traffic and suspects a link failure. In the location
InboundOK, the host is aware of the problem that the peer encountered, but itself
does see incoming traffic. The initial location set ups the REAP state and informa-
tion. It could be conceived as a very fast, abstracted form of context establishment,
that enables reachability detection. The transition initializes the current address
pair, sets the timer inactive and moves to the location Operational.

Two timers are maintained: the send timer and the keepalive timer. The send timer,
reflects to the time that the last payload packet was sent. The keepalive timer reflects
to the time the last payload packet was received. The timers are mutually exclusive,
that is, they cannot run both at the same time. These timers are modeled by a clock
x. The automata uses another clock y for retransmissions. To ensure that certain
actions are taken at the correct time, the locations are supplied with an invariant.
For example in the location Operational, the send timer may not exceed the send
timeout, the keepalive timer may not exceed the keepalive timeout and keepalive
messages are retransmitted within a certain interval:

(timer == T_SEND imply x <= SEND_TIMEOUT) and

(timer == T_KEEPALIVE imply (y <= KEEPALIVE_INTERVAL and

x <= KEEPALIVE_TIMEOUT))

REAP becomes truly active if the send or keepalive timer is running. This happens
if payload is exchanged between the two communicating hosts [page 23, section 6.2]:

Upon sending a payload packet in the Operational state, the node stops
the Keepalive timer if it was running and starts the Send timer if it was not
running. In the Exploring state there is no effect, and in the InboundOK state
the node simply starts the Send timer if it was not yet running.

The location Operational is provided with a transition to itself that takes care
of sending payload. The payload message is constructed with send(PAYLOAD) and
is transmitted through the synchronization channel msg_send. The send timer is
started with start_timer(T_SEND). It is not necessary to stop the keepalive timer
here. Since the timers are mutually exclusive, the keepalive timer is stopped auto-
matically if the send timer is started. In our model, payload is only sent to activate
reachability detection.

40 3. Formal methods applied to Shim6

InboundOK
(timer == T_SEND imply
x <= SEND_TIMEOUT) and
y <= retransmit

Exploring
y <= retransmit

Operational
(timer == T_SEND imply
x <= SEND_TIMEOUT) and
(timer == T_KEEPALIVE imply
(y <= KEEPALIVE_INTERVAL and
 x <= KEEPALIVE_TIMEOUT))

src:IPv6Type,
dst:IPv6Type
y >= retransmit and
default_address_selection(src,dst)
msg_send!
send_probe(INBOUNDOK, src, dst),
update_candidates(src,dst),
y = 0

src:IPv6Type,
dst:IPv6Type
y >= retransmit and
default_address_selection(src,dst)
msg_send!
send_probe(EXPLORING, src, dst),
update_candidates(src,dst),
y = 0

src:IPv6Type,
dst:IPv6Type
timer == T_SEND and
x>= SEND_TIMEOUT and
default_address_selection(src,dst)
msg_send!
start_timer(T_NONE),
send_probe(EXPLORING, src, dst),
update_candidates(src,dst),
y = 0

p.type == PROBE and
p.sta == OPERATIONAL
incoming[i]?
add_probe(),
start_timer(T_KEEPALIVE),
set_new_addresspair(),
y = 0

p.type == PAYLOAD or
p.type == KEEPALIVE
incoming[i]?
stop_timer(T_SEND)

src:IPv6Type,
dst:IPv6Type
p.type == PROBE and
p.sta == INBOUNDOK and
default_address_selection(src,dst)
incoming[i]?
add_probe(),
restart_timer(T_SEND),
send_probe(OPERATIONAL, src, dst),
update_candidates(src, dst)

src:IPv6Type,
dst:IPv6Type
p.type == PROBE and
p.sta == INBOUNDOK and
default_address_selection(src,dst)
incoming[i]?
add_probe(),
restart_timer(T_SEND),
send_probe(OPERATIONAL, src, dst),
update_candidates(src,dst),
y = 0

src:IPv6Type, dst:IPv6Type
p.type == PROBE and
p.sta == EXPLORING and
default_address_selection(src,dst)
incoming[i]?
add_probe(),
restart_timer(T_SEND),
send_probe(INBOUNDOK, src, dst),
update_candidates(src,dst)

src:IPv6Type,
dst:IPv6Type
(p.type == PAYLOAD or
p.type == KEEPALIVE or
(p.type == PROBE and
 p.sta == EXPLORING)) and
default_address_selection(src, dst)
incoming[i]?
add_probe(),
send_probe(INBOUNDOK, src, dst),
start_timer(T_SEND),
update_candidates(src,dst),
y = 0

p.type == PROBE and p.sta == OPERATIONAL
incoming[i]?
add_probe(),
start_timer(T_KEEPALIVE),
set_new_addresspair(),
y = 0

p.type == PROBE and
p.sta == OPERATIONAL
incoming[i]?
add_probe(),
start_timer(T_KEEPALIVE),
set_new_addresspair(),
y = 0

src:IPv6Type, dst:IPv6Type
p.type == PROBE and p.sta == INBOUNDOK and
default_address_selection(src,dst)
incoming[i]?
add_probe(), send_probe(OPERATIONAL, src, dst),
restart_timer(T_SEND), update_candidates(src,dst), y = 0

src:IPv6Type,
dst:IPv6Type
p.type == PROBE and
p.sta == EXPLORING and
default_address_selection(src,dst)
incoming[i]?
add_probe(),
send_probe(INBOUNDOK, src, dst),
restart_timer(T_SEND),
update_candidates(src,dst),
y = 0

src:IPv6Type, dst:IPv6Type
timer == T_SEND and x >= SEND_TIMEOUT and
default_address_selection(src,dst)
msg_send!
start_timer(T_NONE), send_probe(EXPLORING, src, dst),
update_candidates(src,dst), y = 0

p.type == KEEPALIVE
incoming[i]?
stop_timer(T_SEND)

timer == T_KEEPALIVE and
y >= KEEPALIVE_INTERVAL
msg_send!
send(KEEPALIVE),
y = 0

timer == T_KEEPALIVE and
x >= KEEPALIVE_TIMEOUT
msg_send!
send(KEEPALIVE),
stop_timer(T_KEEPALIVE)

p.type == PAYLOAD
incoming[i]?
start_timer(T_KEEPALIVE),
y = 0

initialized
init_reap()

timer != T_SEND
msg_send!
send(PAYLOAD),
start_timer(T_SEND)

Figure 3.10: Automaton REAP[i]

This way, we prevent the payload taking the upper hand in the protocol. Our goal
here is to focus on the REAP messages and their ability to detect failures and agree
on new locator pairs. That is why the transitions is guarded by timer!=T_SEND and
sending payload is not possible in the locations InboundOK and Exploring.

Incoming payload may stop the send timer again [page 22, section 6.1]:

Upon the reception of a payload packet in the Operational state, the node
starts the Keepalive timer if it is not yet running, and stops the Send timer
if it was running.

If the host is in the Exploring state it transitions to the InboundOK state,
sends a Probe message, and starts the Send timer. It fills the Psent and cor-
responding Probe source address, Probe destination address, Probe nonce, and
Probe data fields with information about recent Probe messages that have not
yet been reported as seen by the peer. It also fills the Precvd and corresponding
Probe source address, Probe destination address, Probe nonce, and Probe data
fields with information about recent Probe messages it has seen from the peer.
When sending a Probe message, the State field MUST be set to a value that
matches the conceptual state of the sender after sending the Probe. In this
case the node therefore sets the Sta field to 2 (InboundOk).

In the InboundOK state the node stops the Send timer if it was running,

3.2. Adding REAP 41

but does not do anything else.

The transition from Exploring to InboundOK is the most interesting here. The
exploring host eventually receives incoming messages, so it may move away from
the Exploring location. Incoming messages are notified by the synchronization
channel incoming[i], where i denotes the host identifier. The incoming message
may be a payload, but also keepalive messages and exploring probes trigger the
host to move to InboundOK. If the incoming message is a probe, the received probe
information is stored with the function add_probe. The host will notify the peer
that it sees incoming traffic by sending an “Inbound OK” probe. According to
the draft, the IPv6 addresses should be selected according to the default address
selection algorithm [Dra03]. This algorithm checks all kinds of address properties,
such as their scope and label, whether they are deprecated, wheter they serve as
home address, and so on. Since such verifications cause many additional variables
and states in our model, our selection procedure is simplified. The host randomly
selects a src and dst IPv6 address that are a candidate according to the function
default_address_selection:

bool default_address_selection(IPv6Type src, IPv6Type dst) {

if (src == ipv6_nil or dst == ipv6_nil)

return false;

if (UseIP[src] != i or UseIP[dst] == i)

return false;

return candidate[src][dst];

}

This function first ensures that the address pair is valid. This means that the source
or destination may not be the special IPv6 address ipv6_nil, the source address
is in use by host i and the destination address is not in use by host i. Finally, the
function looks up the value candidate[src][dst], that stores whether address pair
(src,dst) is a candidate address pair. The function update_candidates makes
sure that the used address pair is not a candidate anymore. This way, the same
address pair is not selected the next time and all possible address pairs will be used
during the exploration phase. If there are no candidates left, this function also takes
care of resetting the candidates. When transitioning to InboundOK, the host starts
the send timer and resets clock y, that is needed for retransmissions.

In the locations Operational and InboundOK, the actions for receiving payload
are much easier. These transitions are guarded by p.type==PAYLOAD, to ensure
the incoming packet is a payload. In case the model is in InboundOK, solely the
send timer is stopped (stop_timer(T_SEND)). In case the model is operational, the
keepalive timer is started (start_timer(T_KEEPALIVE)) and a clock y is set to zero.

Clock y is needed to send keepalive messages on a certain interval [page 23, section
6.1]:

While the Keepalive timer is running, the node SHOULD send Keepalive
messages to the peer with an interval of Keepalive Interval seconds. Concep-
tually, a separate timer is used to distinguish between the interval between
Keepalive messages and the overall Keepalive Timeout interval.

42 3. Formal methods applied to Shim6

This is realized by the transition guarded with timer==T_KEEPALIVE and
y>=KEEPALIVE_INTERVAL. The host sends a keepalive with send(KEEPALIVE) and
resets the clock y. When the keepalive timeout is reached, the host sends one last
keepalive and stops the keepalive timer. When the send timeout is reached, the host
suspects a problem [page 24, section 6.4]:

Upon a timeout on the Send timer, the node enters the Exploring state,
sends a Probe message, and stops the Keepalive timer if it was running.

If a problem is detected, the host moves to the location Exploring. These transitions
may only be taken if timer==T_SEND and x>=SEND_TIMEOUT. The host will send an
exploring probe to the peer. The IPv6 addresses are again selected by our simplified
default address selection procedure. Since no timers run in the Exploring state, the
timer is made inactive with start_timer(T_NONE). Clock y is reset with possible
retransmissions in mind.

If the host received a keepalive within SEND_TIMEOUT time, it stops the send timer.
From this point, the state machine is considered idle until new payload is transmit-
ted or received. Otherwise, a probe message exchange is started. On receipt of an
exploring probe, the host moves to the InboundOK location [page 25, section 6.7]:

Upon receiving a Probe with State set to Exploring, the node enters the In-
boundOK state, sends a Probe as described in Section 6.1, stops the Keepalive
timer if it was running, and restarts the Send timer.

If the host receives a probe message indicating that the peer is in the InboundOK

location, it may assume that a new working locator pair is found [page 25, section
6.8]:

Upon the reception of a Probe message with State set to InboundOk, the
node sends a Probe message, restarts the Send timer, stops the Keepalive timer
if it was running, and transitions to the Operational state.

The transmitted probe message has its state set to Operational, and is meant to
inform the peer of the new working locator. On receipt of such probe, the exploration
process is terminated [page 25, section 6.9]:

Upon the reception of a Probe message with State set to Operational, the
node stops the Send timer if it was running, starts the Keepalive timer if it
was not yet running, and transitions to the Operational state.

This final message contains the new working locator in the probe received field. The
address pair is updated with the function set_new_addresspair:

void set_new_addresspair() {

curr_local = p.received.src;

curr_peer = p.received.dest;

last_sent.src = ipv6_nil;

last_sent.dest = ipv6_nil;

last_recvd.src = ipv6_nil;

last_recvd.dest = ipv6_nil;

/* reset all candidates */

if (forall(j:IPv6Type)forall(k:IPv6Type)(not candidate[j][k])) {

for(j:IPv6Type)

3.2. Adding REAP 43

for(k:IPv6Type)

if (UseIP[j] == i and UseIP[k] != i and

j != ipv6_nil and k != ipv6_nil)

candidate[j][k] = true;

}

}

The function also clears the reports about last send and received probe messages
and resets all candidate address pairs. Our models are now ready for verification.
The models are also shown in App. B.

Chapter 4

Verification

The Shim6 draft is unclear about what properties the protocol must satisfy. We may
assume that if the amount of packet loss is low, two hosts must be able to establish
a context after one of them has been triggered to setup a context state. Also, the
protocol must contain no deadlock, that is, in each reachable state a transition is
possible. This can be specified by the two following Uppaal properties:

a. No deadlock:
A[] not deadlock

b. Context establishment:
(h1 != h2 and heuristics[h1][h2]) -->

Context(h1,h2).established and Context(h2,h1).established

The first property, which checks if the model cannot deadlock, contains a predefined
expression deadlock. The second property is not complete. It only verifies that if
host h1 is triggered to establish a Shim6 context for host h2, both contexts must
become established. The actual property we would like to verify should apply to all
host identifiers:

forall(h1:HostType) forall(h2:HostType) (

(h1 != h2 and heuristics[h1][h2]) -->

(Context(h1,h2).established and Context(h2,h1).established)

)

This property can be used with a network with a variable number of connected
hosts. Unfortunately, the grammar for the requirement specification language does
not allow this property. Quantifiers like forall and exists can only be applied
to expressions, and not to property operators like A[] and -->. If we could prove
that all instances of h1 and h2 are symmetric, then it is sufficient to check only
one query. Fortunately, h1 and h2 are declared as HostType, meaning that they are
scalar sets that are fully symmetric. This means that this single query is enough
to verify the property for all host identifiers. However, Uppaal does not accept
concrete values of scalar types. This is solved by initializing two host identifiers h1
and h2. This way, we can be sure that it is the same instance of h1 and h2 on both
sides of the property operator.

45

46 4. Verification

Next to the deadlock property, we would like to verify the REAP model for failure
detection and locator pair exploration. The first property states that if a link fails
that was in use by the current address pair, the link failure will eventually be
detected if payload is being transmitted. The second property states that if such
a link failure is detected, the host will eventually find a new working locator pair
if no vital network problem has occured. That means that the host will reach the
Operational state, or the host is no longer able to send packets (P1), or the host is
no longer able to receive packets (P2):

a. Failure detection:
(sending_payload and

failed[REAP(h1).curr_local][REAP(h1).curr_peer]) -->

exists(h2:HostType) REAP(h2).Exploring

b. Locator pair exploration:
REAP(h1).Exploring --> (REAP(h1).Operational or P1 or P2)

where
P1 = forall(i1:IPv6Type) forall(i2:IPv6Type)

((UseIP[i1] == h1 and UseIP[i2] != h1 and

i1 != ipv6_nil and i2 != ipv6_nil)

imply (failed[i1][i2]))

P2 = forall(i1:IPv6Type) forall(i2:IPv6Type)

((UseIP[i1] == h1 and UseIP[i2] != h1 and

i1 != ipv6_nil and i2 != ipv6_nil)

imply (failed[i2][i1]))

4.1 Abstractions

The model described in chapter 3 is closely related to the definition in the protocol
draft. Consequently, the model became too big to verify nontrivial properties. This
forces us to reduce the state space by performing several abstractions.

Symmetry reduction During the creation of the full Shim6 model, attention was
payed to symmetry reduction [Dil93]. The previous chapter showed that hosts can
be modeled symmetrically. After all, it doesn’t matter which host acts as initiator
or responder. With Shim6, all hosts are equally related, unlike a situation where
one host acts as master and the other hosts act as slaves. Symmetry also applies
to the Network automata. Host identifiers and network identifiers can be defined
symmetrically and this helps to reduce the space and memory consumption of
Uppaal .

For host automata and network automata it is relatively easy to see why they can
be modeled symmetrically. We would like to use this technique to reduce even more
state space. For example, can IP addresses be treated symmetrically? Normally,
the answer would be no. That is because some IP addresses are allocated for spe-
cial purposes. For example, an IPv6 address beginning with FE80 is considered a
link-local address and should never be routed. There are no local addresses in the
Shim6 model, only unicast global addresses are considered. We do need to have

4.1. Abstractions 47

the special unicast unspecified address (denoted as ::). If the unspecified address
was unnecessary, all addresses were global unicast addresses and could be modeled
symmetrically.

Section 3.1.5 showed that IP addresses still can treated symmetrically. This is real-
ized with the use of some modeling tricks. A special instance ipv6_nil of IPv6Type
is declared to be the unspecified address. All other places in the model that deal with
specified IPv6 addresses ip are provided with additional checks ip!=ipv6_nil. As-
signment and identity testing are still the only operations used on IPv6 addresses.
At this point, the model has symmetric IPv6 unicast global addresses, including
the unicast unspecified address. The same trick can be applied to context tags and
nonces.

Decomposition If only certain properties of a system are interesting, it is often
possible to reduce the system into a smaller system in which the property still holds.
This is also true for our model. Since we are interested in Shim6 enabled hosts,
we can abstract from hosts that do not recognize the Shim6 extension headers. In
other words, our model can abstract from ICMP error messages and NO-SUPPORT
states. Removing all variables and locations that relate to this behavior, leads to a
smaller number of locations and transitions, thus also to the number of reachable
states. Another applied decomposition is context forking. Because context forking
is not considered, all FII variables can be safely removed.

Abstraction The full model simulates quite realistic the protocol specification
at the cost of state space. For example, our packet structure follows the message
formats in the Shim6 draft. However, many elements return in different message
formats. Nonces need to be repeated and context tags need to be exchanged. The
packet can also be implemented as one C-struct, containing only the necessary
elements:

typedef struct {

IPv6Type src;

IPv6Type dest;

Type type;

ContextTagType ct1; // for common ct

ContextTagType ct2; // for r1bis ct

NonceType n1; // for request, initiator nonce

NonceType n2; // for responder nonce

IPv6Type ULID_src;

IPv6Type ULID_dest;

bool Ls[IPv6Type];

ValidatorType v_resp;

} ipv6_packet;

Now only ten variables are used for the packet structure. The variable Ls is an array
of IPv6 addresses. The validator v_resp is a structure containing six variables. So
instead of the 44 + 3m packet variables in the full model, now only 9 + 6 + m
packet variables per automaton need to be maintained, m being the number of IPv6
addresses in the model. Another abstraction was made with respect to the locations
i2sent and i2bissent. These two locations almost have the same behavior. The
two locations could be merged. Basically, the only difference between the two states
is that they retransmit different messages. In order to be able to merge the locations,

48 4. Verification

the function send_i2 needs to be modified. In the abstracted model, the function
first checks the state of the context before constructing the packet. Logically, an
I2bis message is constructed if the state was I2BIS-SENT , otherwise an I2 message
is constructed.

Dead variable reduction Dead variable reduction is a technique that reduces
state space by assigning values to variables that are currently not used [Yor00].
A variable is considered used if in a transition it appears in the guard or in the
right side of an assignment. A variable is defined if it appears in the left side
of an transition. A variable is considered dead at a location if on every possible
transition the variable is defined before it is used or it is not used at all. For example,
the variable tries in Config(i,tag) is said to be dead in location established.
Assigning tries=0 upon occurrence of a transition that leads to established, does
not affect any of the relevant properties. We can also identify many dead variables
in the context structure. These can be assigned an appropriate value in the specific
context functions.

4.2 Results

4.2.1 Context establishment

For two network automata and two hosts with each two IP addresses and a nonce
maximum of 3, both properties can now be verified within one minute. Where
the first property (no deadlock) satisfies immediately, the model needs some ad-
justments before the second property can be satisfied. These adjustments indicate
problems in the protocol description that need to be corrected to ensure a clear,
non-ambiguous and correct description. The first three problems were found during
the verification process. The other were found during the modeling of Shim6.

4.2.1.1 Receiving payload packets in I2-SENT or I2BIS-SENT

According to the protocol description, Shim6 should send a R2 message if a payload
packet was received and the corresponding context is in the state I2-SENT or I2BIS-
SENT. Reason for this is that the R2 might be lost during transmission. However,
it is the other end point that needs to retransmit a R2 message, since that host
is already in the ESTABLISHED state, but this host is still waiting to complete
the establishment. In order to complete the process, it should trigger the other
end point to retransmit the R2 message by retransmitting the I2 or I2bis message
(depending on the location). This can be considered an error in the draft, since with
this description the two hosts might never become established.

4.2.1.2 Deadlock in I2-SENT or I2-BISSENT

A deadlock may occur in I2-SENT or I2BIS-SENT because the draft makes a wrong
assumption about retransmissions. Retransmissions of I2 and I2bis messages are

4.2. Results 49

not considered a requirement. The retransmissions are considered truly optional.
The draft also states that retransmitted messages might be rejected after a certain
amount of time, so it is recommended to fallback to I1-SENT after a certain number
of retries. A problem arises if a developer decides not to implement the retransmis-
sions. Consider that if the I2 or I2BIS message was not accepted in the first time or
was lost during transmission, it would also not receive a reply. The implementation
decides not to retransmit messages and therefore does not fallback to I1-SENT,
resulting in a deadlock scenario. My suggestion to solve this problem is to fallback
after a certain amount of time, instead of after a number of retransmissions.

4.2.1.3 Updating context clock

The draft was unclear about when to update the context clock. This clock is used
to check that the context is still in use. The document suggests in chapter 9, that
this clock needs to be reset every time a Shim6 payload is transmitted or received.
Actually, the authors of the draft meant that the clock needed to be updated every
time a payload triggered a context lookup1. This is necessary, because payloads do
not include a Shim6 extension header before a locator switch. However, the host
must update the context clock, in case of a locator switch just after the context
was torn down. Verification pointed out that the context clock also needs to be
updated when receiving a valid Shim6 control message. If this does not occur,
strange situations might occur where one host tears down its context when the
other host is just becomes established.

4.2.1.4 Confusion about context variables

The protocol draft is not clear about which context variables to maintain. In chapter
6, a conceptual data structure is given. Also a table is provided, that shows which
context variables need to be stored during the different context states. But this
table also introduces new elements to the structure, that were not discussed earlier.
For example, the table mentions the initiator and responder nonces. It seems that
they did not describe this in the conceptual model because nonces are transient
information that are only used during context establishment. The other described
context elements are stable context information. The same applies for the newly
introduced R1bis context tag, which is solely used for context recovery. In this
case, the table omitted some context elements, as the verification showed that the
responder nonce should also be stored in I2-SENT and the initiator nonce, responder
nonce and validator should also be stored in I2BIS-SENT. This also means that the
responder nonce and validator in the I2 and I2bis message should not be copied
from the triggering message, but should be retrieved from the context variables.
This is a rather subtle difference with respect to retransmitting messages.

1. This was clarified on the Shim6 mailing list

50 4. Verification

4.2.1.5 Nonce counter for host acting as responder

When a host receives an I2 or I2bis message, it should check the contained nonce
and validator to determine that the message was not replayed. Because a responder
may not create state when generating the R1 or R1bis validator, the nonce and
validator should be verified with global host information, for example a host’s clock.
According to the draft, the idea then is that the responder has only a Secret S and
a responder nonce counter that he is incrementing each time it receives a new I1. In
order to verify that the message is a recent one, the host only accepts messages that
contain nonces not older than VALIDATOR_MIN_LIFETIME. But in order to make this
verification, it will need to store the time each nonce was generated. This implies
context specific state which is not allowed. An alternative as suggested by the
authors of the draft is to use the system clock value as responder nonce, hashed
with some secret value. This way, each message can be verified with the system
clock and VALIDATOR_MIN_LIFETIME only.

4.2.1.6 Generating and validating the responder validator

A responder validator needs to be generated for R1 and R1bis messages. These
validators need to be validated on receipt of I2 and I2bis messages. The draft is
however inconsistent with generating and validating these values. For generation,
different elements are used than for validation. It is not difficult to see that validating
a hash value using alternate elements will fail.

4.2.2 Reachability protocol

For one network automata and two hosts with each two multiple IP addresses, the
REAP verification properties can now be verified within one minute. Unfortunately,
I was not able to verify the system with more network automata, because this
significantly increased the number of states. This means that we only can verify the
properties assuming that there are no race conditions. Still, two minor issues were
revealed.

4.2.2.1 Failure detection

The first encountered problem is about receiving the last payload packet. The prob-
lem is illustrated in Fig. 4.1. Consider two hosts A and B using the address pair
(A1, B1) and (B1, A1) respectively. There is unidirectional payload traffic (P1) from
A to B. Host B makes the communication bidirectional by replying with keepalive
messages (K1). It will send multiple keepalives in response to one single payload
packet, because it needs to send keepalives at certain intervals. Suddenly the link for
address pair (A1, B1) fails. Host A sends its final payload packet (P2) but because
the link is not operational anymore, it is not delivered. Host B continues sending its
keepalive messages until the keepalive timeout is reached. Because A now receives
K1 messages, it does not detect that the link (A1, B1) failed at the end, and that
the message P2 was lost.

4.2. Results 51

If a connection-oriented, reliable protocol is running on top of Shim6, which is
usually the case, this is not a problem. The upper layer protocol guarantees reliable
and in-order delivery of data from sender to receiver, and will detect that P2 was lost.
The send timer in REAP is restarted and the link failure will eventually be detected.
However, if you running an unreliable protocol on top of Shim6, the message is lost
without being noticed.

(1) A → B : P1

(2) B → A : K1

(3) B → A : K1

Link (A1,B1) failure
(4) A →: P2

(5) B → A : K1

Figure 4.1: Failed failure detection

4.2.2.2 Locator pair exploration

When a host suspects a link failure, it sets its reachability state to Exploring. The
Shim6 proposes that four initial probes are transmitted when in the exploration
phase. Retransmissions should occur sequentially and with exponential backoff,
starting the first retransmission after 0.5 seconds. The interval of the retransmis-
sions may not grow beyond the limit of 60 seconds. This limits the number of
addresses that can in practice be used for multihoming, because the upper layer
protocol will fail if the exploration takes too long. According to the REAP draft,
“It will continue sending at this rate until a suitable response is triggered or the
SHIM6 context is garbage collected, because upper layer protocols using the SHIM6
context in question are no longer attempting to send packets.” [page 14, section 4.3].
With this approach, after more than five minutes, only fifteen different locator pairs
can be tried. Suppose our multihoming hosts A and B each maintain five locators.
The number of possible locator pairs for A to reach B is 25. In case that currently
only one of the uplinks for A is working, there are only five working locator pairs.
And because within five minutes, ten address pairs of host A will never be probed
and have become useless. This means that host A has to rely on the default address
selection to pick one of the five working locator pairs within fifteen tries. In reality,
even less probes can be tried, since the upper layer protocol will probably time out
within two minutes. You can imagine, that a large multihomed site with hundreds
of IPv6 addresses even run a bigger risk not picking the right locator pair in time.

Our model is not able to simulate that many IPv6 addresses per host, so we adapt
the number of initial probes to just one. Also, no exponential backoff is used. Still,
the above sketched problem occurred. Perhaps, if the default address selection al-
gorithm is smart enough to directly pick the working locator pair candidates, the
problem does not occur. But this would not be a realistic approach, since default
address selection will need to collect information about the network performance.
Still, we would like to verify the behavior in this best case scenario. Therefore, I
have made our selection procedure very efficient by letting it only select working
locator pairs:

52 4. Verification

bool default_address_selection(IPv6Type src, IPv6Type dst) {

if (src == ipv6_nil or dst == ipv6_nil)

return false;

if (UseIP[src] != i or UseIP[dst] == i)

return false;

if (all_failed())

return candidate[src][dst];

if (failed[src][dst])

return false;

}

If the complete network is down, the selection procedure falls back to the origi-
nal candidate selection. Otherwise, it decides its candidates with use of the array
failed. In this best case scenario, the property of locator pair exploration is satis-
fied.

4.3 Formalization results

Modeling Shim6 gave insight of the importance of formal methods. The process
of formalization of the protocol description already revealed a number of problems.
Furthermore, Uppaal turned out to be a sufficient tool to model parts of the Shim6
protocol. Shim6 needs to deal with timing constraints, which can be simulated in
Uppaal . Furthermore, Uppaal uses C-like syntax, that is recognizable for imple-
menters of kernel applications. Uppaal provides a graphical syntax for finite state
machines, which makes it easy to understand for protocol designers. In short, the
tool has a low threshold access and is able to model non-trivial real time systems.

Still, improvements to Uppaal can be made, especially to the C-like syntax. The
following issues were revealed:

• The C-like syntax is sometimes a bit too primitive. For Shim6, each message
format can be followed by one of multiple type specific data types. Unfortu-
nately, it is not possible to point to the corresponding data type. Instead, we
had to include all data types into the IPv6 packet. This creates a lot of un-
necessary state. With a C-like union type or pointers, we were able to reduce
this.

• With Shim6, the IPv6 addresses in the locator lists can be updated, but
also the length of the locator lists may differ. However, Uppaal does not
allow variable length of lists. We need to initialize our locator lists with the
maximum length, that is, the total number of IPv6 addresses.

• The context establishment is actually a four-way communication exchange.
Incoming messages require outgoing messages in the form of a reply. Ideally,
we would like synchronization channels that can handle input and output
messages in one transition. This way, we could model the “receiving of I1 and
sending of R1” in one transition. However, input / output transitions are not
possible in Uppaal . We can only provide the input part by assigning values
in the assignment section of the input transition. For receiving and sending,

4.3. Formalization results 53

we need to model at least two transitions.
• Our model needed initialization, in order to assign IPv6 addresses to hosts.

We introduced a new automaton just for this initialization. Adding a new
automaton for this seems a bit roundabout.

• The grammar for the requirement specification language does not allow the
application of quantifiers like forall and exists to property operators like
A[] and -->. For Shim6, this has the consequence that the properties become
unclear.

Chapter 5

Conformance testing

Shim6 is close to become a proposed standard. Because of the high interest, several
code bases are currently working on implementations of Shim6. The aim is to be-
come experienced with Shim6 and to detect flaws. At the moment, one Shim6 beta
implementation is available (UCL, [Bar06]). If this implementation is conform the
draft, it should encounter the same problems that have been revealed by Uppaal .

Checking if the implementation is conform the specification is however not that
simple. Therefore, a relation between the implementation and the informal language
in the draft must be examined. In order to facilitate this process, the draft uses
keywords to determine the requirements for implementations. We will test the UCL
implementation against some of the informal notated requirements in our created,
virtual environment.

5.1 Test setting

Three components are needed to setup the test environment. First, a Shim6 sim-
ulator that is able to speak with the UCL implementation is needed. This tool is
used to simulate the problems that were detected by the verifier and trigger the
requirements as described in the draft. Second, a virtual network should be used as
test environment. It is recommended that a new kernel is tested in a virtualized en-
vironment before adapt the kernel physically. Our test environment contains three
virtual hosts: two Shim6 enabled hosts and one running the simulator. Finally, a
traffic analyzing tool is needed to monitor the context establishment exchange. This
allows us to examine and verify the behavior of the implementation.

5.1.1 The shimulator

Our ad hoc Shim6 simulation code, which has been called the shimulator, consists
of two programs. One program intercepts incoming and outgoing Shim6 messages

55

56 5. Conformance testing

on a certain interface. It maintains the context state and determines its actions
depending on the state and the incoming messages. These actions are implemented
according to the Shim6 draft. The other program allows you to manually inject
your own Shim6 packets via the command line. This part of the shimulator may be
used to create special Shim6 packets, for example with unknown critical options.
The responses to these packets will again be captured by the interceptor program.

The interceptor program, called the shimterceptor, can be called with multiple
interfaces:

./shimterceptor eth0 eth1 eth2

Both programs must be run as root, because you need to have privileges to access
the interface. The shimterceptor will first construct its locator set with the IPv6
addresses that are assigned to the provided interfaces. In this case, the locator set
contains three locators. After constructing the set, the shimterceptor will listen
to the first provided interface, in this case eth0. The shimterceptor will only be
terminated by way of user input. Whenever a packet is passing by this interface,
the function handler intercept is executed. This determines if the packet is a
Shim6 packet by checking the next header field of the IPv6 header data, and if the
packet is an incoming or outgoing packet by checking the source and destination
fields. If the message is outgoing and the message type is equal to I1, a context is
allocated. If the message is incoming, the actions follow the rules of the draft.

The other program, called the shimjector, is also called with multiple interfaces.
Again, these are needed to construct the locator set. The shimjector needs more
parameters. For instance, it needs to know what the destination of the packet is,
which type of message needs to be injected, and if options must be included.

./shimjector -send I2 foo.nlnetlabs.nl eth1 eth0 eth2 -fc -uc -l

In this example, an I2 control message is transmitted to the computer foo.nlnetlabs.nl
via interface eth1. The message will contain a critical forked instance identifier op-
tion (-fc), an critical unknown option (-uc) and a non-critical locator list option
(-l). The locator list option will contain three locators in the order they were pro-
vided through the command line.

5.1.2 The virtual network

For the test environment, VMWare software is used. VMWare Workstation is
a tool that supports virtualization on x86 architecture machines [Ada06]. It allows
many different kinds of operating systems and provides three kinds of networking:

• Bridged Networking treats guest machines as a unique identity on the real
network, unrelated to its host.

• Network Address Translation (NAT)-based Networking lets guest
machines share the IP and MAC addresses of the host. The virtual machine
and the host share a single end point identifier. The virtual machine can
access other end points in the external network, but reversed this does not
work: External end points cannot initiate connections to the virtual machine.

• Host-only Networking configures the guest machine to allow network ac-
cess only to the host.

5.1. Test setting 57

The last type of networking is sufficient for our test environment. With host-only
networking, virtual hosts are able to communicate without traffic being routed over
the Internet. Data packets will not leave the host, though the network traffic is visi-
ble to the host computer. It is configured a virtual Ethernet adapter vmnet1, that is
used to transmit the virtual traffic. The virtual traffic can be with a traffic analyzer,
capturing packets on the host virtual adapter. Three guest hosts are connected to
vmnet1. Two of them implement the UCL implementation of Shim6, version 0.4.
The third runs our shimulator. The addresses for these machines are provided by
the VMWare DHCP Server. This setup is schematically illustrated in Fig. 5.1.

Figure 5.1: Setup of the conformance test environment

5.1.3 The Wireshark traffic analyzer

Wireshark [Lam07] (formerly known as Ethereal) is an open source network protocol
analyzer. It captures messages on the virtual Ethernet adapter by setting it in
promiscuous mode. Packets are than dissected and the pieces of information are
shown to the user. Many protocols are supported as a result of people contributing
that support. For my thesis, I have added support for the Shim6 protocol.

Shim6 is considered an IPv6 extension header, so in order to parse Shim6 packets,
the code for sniffing IPv6 packets needs to be adapted. I shall discuss the most
important modifications. A captured packet is provided to the dissect functions.
First of all, the Shim6 header must be identified and structured. If the IPv6 packet
is followed by Shim6 data, its next header field must be equal to 61:

#define IP_PROTO_SHIM6 61

The Shim6 header structure looks a lot like the other extension headers. It also
starts with a next header field and a header extension length. This header contains
one extra bit P to distinguish control messages from payload packets:

struct ip6_shim {

guint8 ip6s_nxt; /* next header */

guint8 ip6s_len; /* header extension length */

guint8 ip6s_p; /* P field and first 7 bits of remainder */

};

58 5. Conformance testing

The protocol needs to be registered:

{ &hf_ipv6_shim6,

{ "SHIM6 ", "ipv6.shim6", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }

}

This allows you to filter Shim6 traffic. Several other registrations are made for all
Shim6 elements. This is useful to filter, for example, only Shim6 payload messages.
Now, the dissecting code for Shim6 can be added. This code is called when the
function dissect_ipv6 reads out a next header indicating Shim6:

case IP_PROTO_SHIM6:

shim6 = TRUE;

advance = dissect_shim6(tvb, offset, tree);

...

The captured packet may contain several different protocol message formats. A
Shim6 payload message will typically contains an Ethernet header, an IPv6 header,
a Shim6 header, a TCP header and some application header. Each different header is
represented as a tree. The function dissect_shim6 adds a new subtree to the IPv6
tree. First, the three common element, the next header field, the header extension
length and the P bit, are added to the Shim6 subtree:

ti = proto_tree_add_item(tree, hf_ipv6_shim6, tvb, offset, len, FALSE);

shim_tree = proto_item_add_subtree(ti, ett_ipv6);

/* Next Header */

proto_tree_add_uint_format(shim_tree, hf_ipv6_shim6_nxt, tvb,

offset + offsetof(struct ip6_shim, ip6s_nxt), 1, shim.ip6s_nxt,

"Next header: %s (0x%02x)", ipprotostr(shim.ip6s_nxt),

shim.ip6s_nxt);

/* Header Extension Length */

proto_tree_add_uint_format(shim_tree, hf_ipv6_shim6_len, tvb,

offset + offsetof(struct ip6_shim, ip6s_len), 1, shim.ip6s_len,

"Header Ext Length: %u (%d bytes)", shim.ip6s_len, len);

/* P Field */

proto_tree_add_boolean(shim_tree, hf_ipv6_shim6_p, tvb,

offset + offsetof(struct ip6_shim, ip6s_p), 1,

shim.ip6s_p & SHIM6_BITMASK_P);

If shim.ip6s_p & SHIM6_BITMASK_P is verified, the captured packet is identified as
a Shim6 payload. The receiver context tag field is added to the tree and dissecting
continues with the data that follows Shim6. Otherwise, the packet is a Shim6 control
message. The type of message is retrieved, as well as the used protocol (HIP or
Shim6), the checksum and the type specific data:

/* Message Type */

ctype = val_to_str(shim.ip6s_p & SHIM6_BITMASK_TYPE, shimctrlvals,

"Unknown Message Type");

proto_tree_add_uint_format(shim_tree, hf_ipv6_shim6_type, tvb,

offset + offsetof(struct ip6_shim, ip6s_p), 1,

5.1. Test setting 59

shim.ip6s_p & SHIM6_BITMASK_TYPE, "Message Type: %s", ctype);

/* Protocol bit (Must be zero for SHIM6) */

proto_tree_add_boolean_format(shim_tree, hf_ipv6_shim6_proto, tvb, p,

1, tvb_get_guint8(tvb, p) & SHIM6_BITMASK_PROTOCOL, "Protocol: %s",

tvb_get_guint8(tvb, p) & SHIM6_BITMASK_PROTOCOL ? "HIP" : "SHIM6");

p++;

/* Checksum */

csum = shim_checksum(tvb_get_ptr(tvb, offset, len), len);

if (csum == 0) {

proto_tree_add_uint_format(shim_tree, hf_ipv6_shim6_csum, tvb,

p, 2, tvb_get_ntohs(tvb, p), "Checksum: 0x%04x [correct]",

tvb_get_ntohs(tvb, p));

} else {

proto_tree_add_uint_format(shim_tree, hf_ipv6_shim6_csum, tvb,

p, 2, tvb_get_ntohs(tvb, p),

"Checksum: 0x%04x [incorrect: should be 0x%04x]",

tvb_get_ntohs(tvb, p),

in_cksum_shouldbe(tvb_get_ntohs(tvb, p), csum));

}

p += 2;

/* Type specific data */

advance = dissect_shimctrl(tvb, p, shim.ip6s_p & SHIM6_BITMASK_TYPE,

shim_tree);

The function dissect_shimctrl takes care of the dissecting of control messages.
After these formats, some options may be included. In theory, there may be an
infinite number of options. The end of the Shim6 header and thus also the options
is indicated by offset+len. As long as our variable p, which is used as a marker
that registers where we have left off. As long as p does not pass by the end of the
Shim6 header:

if (p < offset+len && shim_tree) {

ti_shim = proto_tree_add_text(shim_tree, tvb, p, len-(advance+6),

"Options (%u bytes)", len-(advance+6));

opt_tree = proto_item_add_subtree(ti_shim, ett_ipv6);

while (p < offset+len) {

p += dissect_shimopts(tvb, p, opt_tree);

}

}

60 5. Conformance testing

This ends the dissection of the Shim6 packet data. A screenshot of a typical context
establishment exchange is shown in Fig. 5.2.

Figure 5.2: Screenshot of Wireshark that followed a Shim6 context establishment
exchange. The R1 message is shown in detail. The filter expression ensures that
only Shim6 packets are shown. At the foot of the picture you can see a number of
selected bytes that represent the Shim6 data of the packet.

5.2 Results

Setting up the test environment was not as straight-forwarded as expected. First
of all, the Shim6 implementation seemed to crash the host every time the context
was established. The implementation required a daemon reapd to be active. This
needed to be started manually or at start up of the host. If reapd was not running,
the implementation would freeze the kernel1.

The other problem is that the implementation did not accept link local addresses
to the locator sets. Our virtual hosts only had link local addresses, which resulted
in exchanging empty locator lists to each other. Link local addresses were not ac-
cepted due to technical problems. In the context of Shim6, link local addresses only
make sense if they are associated with a link. In the current protocol version, this
additional information cannot be stored.

After solving the first two encountered problems, we let the two Shim6 implemen-

1. This was fixed in the version 0.4.3 of the UCL implementation, released on 17 April 2007.

5.2. Results 61

tations communicate with each other. Because both implementations are identical,
both hosts decide to set up a context at the same time. This results in a concurrent
context establishment with crossing I1 messages. This seems to work fine. Next, the
implementation is tested against the requirements.

5.2.1 Implementation requirements

The draft uses different kinds of keywords to describe the implementation require-
ments. The keyword MUST is used to identify an absolute requirement. MUST
NOT means that the described behavior is absolutely prohibited. The keyword
SHOULD may only be ignored if there exists a valid reason not to implement it,
but the full implications must be understood and carefully weighed. The keyword
SHOULD NOT indicates the opposite behavior. Finally, the keyword MAY means
that the described behavior is truly optional.

The exact meaning and the use of these keywords are defined by the IETF [Bra97],
but Shim6 is not consistent in using these keywords. For example, the draft says
[page 64, section 7.13]:

The host moves to ESTABLISHED state.

This presumably means that the host MUST move to ESTABLISHED state. Also,
behavior is described using conflicting keywords. The draft describes the receipt of
an option that the host does not understand [page 41, section 5.14]:

If C=1 then the host SHOULD send back an ICMP parameter problem
(type 4, code 1), with the Pointer referencing the first octet in the option Type
field.

When describing the receipt of Shim6 control messages, unknown critical options
are mentioned again [page 81, section 12.2]:

If there is any option in the message with C=1 that isn’t known to the host,
then the host MUST send an ICMPv6 Parameter Problem, with the Pointer
field referencing the first octet of the Option Type.

In this case, the keywords SHOULD and MUST are used to identify different kind of
requirement levels for two identical behavioral situations. Nevertheless, we will ob-
serve the Shim6 requirements. These are copied from the draft specification [Nor06].

5.2.1.1 Renumbering implications

When a host is renumbered, one or more of its locators become invalid and possibly
new locators are added to its locator set. This enables the possibility that commu-
nication for an ULID pair continues after one or both ULID addresses have become
unavailable. The unavailable ULID may be reassigned to another site while it is still
being used for the existing communication. The Shim6 protocol is not intended to
let communication survive renumbering, but this potential source for confusion can
be avoided if we require that any communication using a ULID MUST be termi-
nated when the ULID becomes invalid. This can be accomplished by discarding the
ULID context.

62 5. Conformance testing

For this requirement, we let the two Shim6 enabled hosts communicate with each
other. When the context is established, we deactivate the interface eth0 associated
with the ULID pair of the initiator. This should result in a removal of the context.
Instead, the hosts start probing for a new locator pair. We may discuss whether
deactivating an interface is a form of renumbering. It does meet the description
“one ore more of its locators become invalid”. On the other hand, it may also be
seen as link failure. In this case, the implementation acts correctly by starting a
probe exploration process.

If another interface eth1 is deactivated, a new probe exploration starts. It is ex-
pected to find the final locator associated with interface eth2. This is true, but the
implementation does not recognize this. Ten seconds (equal to the send timeout)
after sending an probe with the state field set to Operational, the host will send a
new probe with the state field set to Exploring. This process repeats itself contin-
uously. Barre already discussed the exploration process termination on the Shim6
mailing list, but this looks like a different problem. The exploration may start only
if the send timeout expires. According to the change log of the latest Shim6 release
of UCL, we may assume that this had something to do with the probe reports:

The probe report lists are cleared upon send timer expiry. This avoids
pretending we are reachable through a path that has recently failed (and maybe
caused the send timer expiry)

5.2.1.2 The upper layer

In the I1, I2 and I2bis messages, when the IPv6 source and destination addresses
in the IPv6 header does not match the ULID pair, the ULID pair option MUST
be included. In particular, if a ULID pair option was included in the I1 message
then it MUST be included in the I2 message as well. If the ULP is using separate
contexts, the message associated with the forked context MUST include the Forked
Instance Identifier option carrying the instance identifier value for this context.

The UCL implementation does not yet cover context forking. Also, the including of
an ULID pair option is too difficult to trigger. Therefore, we should try to trigger
the implementation to send an I1 for an ULID pair, with non-equal IPv6 addresses.
Normally, the ULID pair is also used for being the source and destination fields
[page 6, section 1.3]:

Underneath, and transparently, the multihoming shim selects working loca-
tor pairs with the initial locator pair being the ULID pair... If communication
subsequently fails the shim can test and select alternate locators. A subsequent
section discusses the issues when the selected ULID is not initially working
hence there is a need to switch locators up front.

But because no locator set is known yet before Shim6 establishes the context, this
behavior is hard to trigger.

5.2.1.3 Critical options

Options may be critical. If the critical bit C is equal to one, the parameter MUST be
recognized by the recipient. All the control messages can contain any options with

5.2. Results 63

C=0. If there is any option in the message with C=1 that isn’t known to the host,
then the host MUST/SHOULD send an ICMPv6 Parameter Problem, with the
Pointer field referencing the first octet of the Option Type. Such messages MUST
NOT be processed.

For this test, we use our shimulator and send packet containing critical and non-
critical options. There turned out to be no behavioral difference between sending
critical and non-critical options. So setting the critical option does not force options
to be recognized or, in case of unknown options, be discarded. There were some other
issues found when executing these tests:

• The locator list option should include internal padding in the content length
field. The implementation does not include the padding, resulting in an in-
correct retrieval of the locator list. The locators that are stored are bogus
IPv6 addresses, as shown in Fig. 5.3. Technically, the implementation does
not overrule requirements from the draft. The draft should use a keyword to
require that internal padding is included in the content length field.

• An I1 message including locator preferences, CGA PDS, CGA signature, FII,
ULID pair or unknown options is being processed, but if the same options are
included in an I2 message, the message is silently dropped or does not pass
the verifications.

• The ULID pair is not taken from the ULID pair option if it is present.
• The first element of the locator list is assigned to be the locator pair, while

this initially should be the ULID pair (see Fig. 5.3).

5.2.1.4 Locator preferences

The locator preferences option is used to express performance, priority and weight
values for each locator. Every value takes up one octet in the message format. If all
three values are used, the locator preferences are stored in three octets per locator.
A field called the element length enables the host to retrieve how many values are
used per locator. The draft does not specify the format when the element length is
more than three, except that any such formats MUST be defined so that the first
three octets are the same as in the above case, that is, one octet flags field followed
by one octet priority field, and one octet weight field.

When a locator preferences option is included in the I2 message, the packet is not
being processed. That it, no reply is sent back. If an update request message or
an I2bis message is transmitted, the Shim6 enabled host replies with an ICMP
parameter problem. This indicates that update messages and context recovery are
not yet implemented.

5.2.1.5 Context confusion

As part of establishing a new context, each host has to assign a unique context tag.
Since the payload extension headers are demultiplexed based on the context tag
value only, the context tag MUST be unique for each context. In addition, in order
to minimize the reuse of context tags, the host SHOULD randomly cycle through
the 247 context tag values.

64 5. Conformance testing

Figure 5.3: The Shim6 context after a context establishment exchange between
the UCL implementation and our shimulator. The locator list has been retrieved
incorrectly. The locator pair is not initially set to be the ULID pair.

Context confusion might occur after context loss or premature garbage collection.
The confusion can be detected when an I2, I2bis or R2 message is received, because
it is required that those messages MUST include a sufficiently large set of locators
in the locator list option. The host can determine whether or not two contexts are
maintained for the same peer by comparing if there is any common locators in the
locator set of the peer. Thus, when receiving such a message, a host MUST look
for possible context confusion. This MUST be done before a possible R2 message
is replied.

If the situation occurs, the context MUST be removed: it MUST NOT be used
anymore to send any packets. It MAY attempt to re-establish the old context
by sending a new I1 message and moving its state to I1-SENT. In any case, the
host MUST NOT keep two contexts with overlapping peer locator sets and the
same context tag in ESTABLISHED state, since this would result in demultiplexing
problems on the peer.

First of all, the UCL implementation increments the context tag each time a new
context is allocated. This provides unique context tags, but does not meet the
requirement to cycle through the 247 possible context tag values. Second, the Shim6
draft does not specify what can be considered a sufficiently large set of locators.
In our test setting, a locator list option contain three valid locators at maximum.
Nevertheless, we try to trigger context confusion. A host can detect confusion when
it receives an I2, I2bis or R2 message. Context confusion is usually the consequence
of (premature) context loss. In order to be able to simulate context loss, we first
let the UCL implementation and the shimulator set up a context. At this point in
time, both hosts maintain an established context. We may trigger context recovery
by sending a new I1 message [page 57, section 7.5]:

If one end has garbage collected or lost the context state, it might try to
create a new context state (for the same ULID pair), by sending an I1 message.
The peer (that still has the context state) will reply with an R1 message and

5.2. Results 65

the full 4-way exchange will be performed again

An I1 packet with the same ULID pair, but a different context tag is included. The
R1 message is delivered to the established context state associated with the host
that implements Shim6, since I1 packets are dispatched upon their ULID pair and
the FII. If the state exists in ESTABLISHED state and the locators do fall in the
sets, then the host compares the context tag for the context with the context tag
contained in the I1 message. If they do not match, a R1 message must be sent back.
However, the UCL implementation incorrectly considers the I1 message to be of the
same context, and a R2 message is replied. Context confusion was not triggered,
but we did reveal another issue.

5.2.1.6 Locator verification

HBA/CGA verification SHOULD be performed by the host before the host ac-
knowledges the new locator, by sending an Update Acknowledgment message, or
an R2 message. Before a host can use a locator (different than the ULID) as the
destination locator it MUST perform HBA/CGA verification if this was not per-
formed before upon receipt of the locator set. In addition, it MUST verify that
the ULID is indeed present at that locator. This verification is performed by do-
ing a return-routeability test as part of the Probe sub-protocol. If the verification
method in the locator list option is not supported by the host, or if the verification
method is not consistent with the CGA Parameter Data Structure, then the host
MUST ignore the locator list and the message in which it is contained, and the host
SHOULD generate an ICMP parameter problem (type 4, code 0), with the Pointer
referencing the octet in the verification method that was found inconsistent.

To test if the locators are verified at the right moments, the shimulator sets up
a context with one Shim6 enabled host. In the I2 message, a locator list option
is provided that includes the locators of the shimulator, a multicast address and
a locator that belongs to the second Shim6 enabled host. Unfortunately, HBA or
CGA is not yet supported by the UCL version of Shim6. The implementation stores
all provided peer locators in the peer locator list, as illustrated inf Fig. 5.4. Because
HBA and CGA is not yet supported, none of the above requirements regarding
HBA and CGA are satisfied.

When the host needs to start locator exploration, the implementation does verify
the peer addresses: Only valid, global unicast addresses are used for probing. This
means that also the second, not-participating Shim6 host is probed (at address
2001::20c:29ff:feb9:7fb6). If this host implemented context recovery, it should reply
with a R1bis message. Now, the probe is silently discarded.

5.2.1.7 Receiving messages

When receiving Shim6 control messages, the host MUST verify that:

• The Shim6 checksum field is correct.

• The Shim6 header length does not claim to end past the end of the IPv6
packet.

66 5. Conformance testing

Figure 5.4: The Shim6 context after a context establishment exchange between the
UCL implementation and our shimulator. The peer locators are stored without any
verification.

• the Shim6 header length does not claim that the Shim6 packet is smaller than
the minimum Shim6 packet length.

• Neither the IPv6 source field nor the destination field is a multicast address.

When receiving I2 or I2bis messages, the host verifies that the responder nonce is a
recent one. Nonces that are no older than VALIDATOR MIN LIFETIME SHOULD
be considered recent. If a CGA Parameter Data Structure (PDS) is included in the
message, then the host MUST verify if the actual PDS contained in the message
corresponds to the peer ULID. If none of the verifications failed, the host looks for
a corresponding context. In case the I2/I2bis message leads to an update of the
context, the host MUST send a R2 message back. Before updating the peer locator
set, the host SHOULD perform the HBA/CGA validation for the peer locator set.

Also upon the receipt of a R2 message including a CGA PDS option, the host MUST
verify that the actual PDS contained in the message corresponds to the peer ULID.

When receiving update requests or acknowledgments, the host MUST verify that
the IPv6 source address field is part of peer locator set and that the IPv6 destination
address field is part of local locator set. If this is not the case, the sender of the
update message has a stale context which happens to match the local context tag
for this context. In this case the host MUST send a R1bis message, and otherwise
ignore the update message. Again, if a CGA PDS is included, the host MUST verify
if the actual PDS contained in the packet corresponds to the peer ULID.

In this test case, the shimulator sends various Shim6 packets that do and do not
meet these requirements. The implementation all respectively processed and dis-
carded them correctly. Because locator verification and update messages are not
implemented yet, the other requirements could not be tested.

5.2. Results 67

5.2.1.8 Retransmissions

If the initiator does not receive an R2 message after I2 TIMEOUT time after sending
an I2 message it MAY retransmit the I2 message. The responder validator option
might have a limited lifetime, that is, the peer might reject responder validator
options that are older than VALIDATOR MIN LIFETIME to avoid replay attacks.
Thus, the initiator SHOULD fall back to retransmitting the I1 message when there
is no R2 received after retransmitting the I2 message I2 RETRIES MAX times.

The same behavior applies to retransmitting I2bis messages. Retransmissions were
revealed by Uppaal to be incorrect behavior, which we also like to test against
the UCL implementation. Therefore, we trigger the shimmed host to initiate a
context establishment exchange. The shimulator will reply with R1, but will not
answer to the I2 message. This way, the context of the initiator will stay in I2-
SENT. Wireshark confirms that the implementation does retransmit I2 messages
and fallback occurs after sending four retries, and it will not deadlock in I2-SENT.

The roles are changed: the shimulator now acts as initiator and the Shim6 host
acts as responder. To verify that the Shim6 host rejects responder validators that
are older than VALIDATOR MIN LIFETIME, the shimulator waits thirty seconds
before sending the I2 message. This equals the maximum lifetime of the responder
validator (Actually, VALIDATOR MAX LIFETIME would be a better name for
this). After thirty seconds, the I2 message still is replied with a R2 message. There
might be a small deflection in the time units of the hosts, so we try the test again.
But this time the shimulator waits for forty five seconds. With this setup, the I2
message is discarded.

5.2.1.9 Sending payload

When sending packets, if there is a ULID pair context for the ULID pair, and the
ULID pair is no longer used as the locator pair, then the sender needs to transform
the packet. First, the IP address fields are replaced. The IPv6 source address field
is set to the local locator and the destination address field is set to the peer locator.
This MUST NOT cause any recalculation of the ULP checksums, since the ULP
checksums are carried end-to-end and the ULP pseudo-header contains the ULIDs
which are preserved end-to-end.

For this test, the shimulator does not have to be used. We start a communication
between the two shimmed hosts. Context establishment occurs and the payload
transmission continues without modifications to the packets. If we check the ULP
checksum, in this case the TCP checksum, Wireshark confirms that this checksum
is correct. We trigger locator pair exploration by deactivating one of the interfaces.
Payload will be tagged with a Shim6 extension header. Now, Wireshark complains
that the TCP checksum is incorrect. This is expected, since the TCP checksum was
not recalculated, but the packet data was modified. The packet is restored at the
network layer. On that level, the TCP checksum will match the packet data again.

68 5. Conformance testing

5.2.1.10 Receiving payload

When receiving packets, the context looks if there exists a corresponding context. If
no context is found, the receiver SHOULD generate a R1bis message. According to
the draft, the host should reply with a R2 message if the context is in the state I2-
SENT of I2BIS-SENT. Formal verification showed that this was incorrect behavior.
Instead of a R2 message, the host must reply an I2 or I2bis message, depending on
the context state.

Since the implementation does not yet support context recovery, no R1bis message
is generated when the shimulator sends a Shim6 payload. Next, we will trigger the
shimmed host to initiate a context establishment exchange, just like we did with
the retransmissions test case. Instead of finalizing the exchange by sending R2, the
shimulator immediately starts sending Shim6 tagged payload. The implementation
follows the incorrect description of the draft and replies with R2, while it should
reply with an I2.

5.2.1.11 Message formats

Shim6 messages must follow certain message formats. Many messages contain bits
that are reserved for future use. They MUST be ignored on receipt. Several options
may be included in the message. The length of an option is a multiple of eight
bytes. When needed, padding MUST be added to the end of the parameter so that
the total length becomes a multiple of eight bytes. If padding is added, the option
length field MUST NOT include the padding.

Special care is needed for the locator list option. When it is sent, the necessary
HBA/CGA information for verifying the locator list MUST also be included. The
subset of locators included in the correspondent Locator List Option which verifi-
cation method is set to CGA. When using a CGA signature for the locators, the
signature MUST include the locators in the order they are listed in the locator list
option.

For all transmitted messages by the shimmed host, the message formats were con-
form the requirements. The implementation does not include HBA or CGA informa-
tion for verifying the locator list, but this is because support for locator verification
is not yet implemented.

5.2.1.12 Context teardown

It is RECOMMENDED that hosts do not tear down the context when they know
that there is some upper layer protocol that might use the context. It is also REC-
OMMENDED that implementations minimize premature teardown by observing
the amount of traffic that is sent and received using the context, and only after it
appears quiescent, tear down the state. A reasonable approach would be not to tear
down a context until at least five minutes have passed since the last message was
sent or received using the context.

5.2. Results 69

The implementation maintains an Age counter, which is reset every time the context
is used. The context is teared down a long time after five minutes, probably because
this longer lifetime facilitates in the testing phase.

5.2.2 Test conclusions

The test results gave us insight of the quality of the implementation in question.
Some of the requirements were satisfied, for example correct message formats, no
ULP checksum re-calculation and correct retransmissions. Some of the requirements
were not satisfied, for example no difference between critical and non-critical options
and incorrect actions when receiving payload. Testing the requirements also revealed
some other issues, for example omitted internal padding in the content length field
and wrong assignment of the initial locator pair.

The tests described in section 5.2.1.8 and section 5.2.1.10 were able to reproduce
the issues described in section 4.2.1.2 and section 4.2.1.1 respectively. This stresses
out the importance of formal methods, as being a complementary technique to
verify properties of Internet protocols. The other tests encountered other issues that
sometimes because the draft described incorrect behavior, and sometimes because
the draft was misinterpret. Unfortunately, many requirements could not yet be
tested, simply because the behavior was not yet implemented.

Chapter 6

Conclusions

Shim6 provides a scalable solution specific for multihoming while minimizing de-
ployment disruption. Currently, the protocol is still in development. This thesis
shows some efforts that try to improve the quality of the protocol specification. The
process of formalization, verification and testing are shown to be successful contri-
bution methods. Formalization was useful in clarifying the protocol specifications.
It revealed some ambiguities and unclarities in the draft specification. Verification
also revealed some errors. These issues have been communicated to the authors of
the Shim6 draft. They have been acknowledged and adjusted in the specification.

The technique of model checking has been used for formalization and verification
of the Shim6 protocol. A great advantage of model checking is that it is intended
to find many errors quickly and automatically. The Uppaal model checker was
used to formalize the Shim6 specifications. Two critical parts of Shim6, the context
establishment and REAP, have been formalized and verified with Uppaal . This
tool benefits from its possibility to model timing constraints and its rich syntax.
However, model checking has to deal with the state space explosion problem. Also,
the syntax could still be improved with more C-like data types. Furthermore, the
verification process has shown that the requirement specification language is still
somewhat primitive.

One Shim6 beta implementation has been tested on conformance. Therefore, I have
added support for capturing Shim6 packets to the Wireshark traffic analyzer. This
can be useful for other implementors and testers of Shim6. The conformance test
has been an incomplete process, because we had to deal with an unfinished beta
implementation and a draft specification written in informal language. Besides, the
draft showed inconsistency in its requirements. This makes it hard to verify if an
implementation is conform the standard, and this conformance test cannot been
be seen as a waterproof test. Nevertheless, several problems were revealed. Some
problems were already discovered by the model checker, some were discovered by
interoperability between our Shim6 simulator and the Shim6 implementation and
some were discovered by conformance testing. These problems are reported to the
author of the implementation and this may facilitate in the Shim6 standard creation
process.

71

72 6. Conclusions

6.1 Future Work

This thesis opens possibilities for future research of the formalization and imple-
mentation of Shim6.

Formalization Our current Shim6 model is divided in two Uppaal systems, to
avoid state space explosion. Also, properties were verified with a very low number of
hosts, network automata and nonce values. Furthermore, the Shim6 documentation
has developed in the last year. Our model is receptive for several adaptations that
may lead to improvements. The most important betterments would be:

• Integrating the REAP model with the context establishment model, to provide
a complete picture of Shim6.

• Processing the changes in the draft, in order to keep the models up to date.
• Expanding the model with behavior that was omitted, for example context

forking and HBA/CGA.
• Applying adaptations that may lead to a more efficient state space, making

the verification process faster.

This can be realized by modifying the model, or by collaboration with the Uppaal

team to improve the quality in general. For the latter, several suggestions for im-
proving the model checker have been provided, like adding input/output transitions
and extending the C-like syntax and the grammar for the requirements specifica-
tions.

Implementation Several code bases are already working on Shim6 implementa-
tions. Currently, only one beta implementation for Linux 2.6 is available. If Shim6
wants to be an Internet standard, more implementations are needed that are com-
plete, that can operate in different systems and that interoperate with other im-
plementations. Lots of work is needed to include HBA/CGA locator verification,
context recovery and context forking. Also, the draft specification is still open for
improvements. The Shim6 work group is still discussing the Shim6 architecture and
location with respect to IPSec and fragmentation, the use of Shim6 error messages,
calculation of the ULP checksum at middleboxes and many other issues. In general,
the IETF is discussing the multihoming architecture, whether Shim6 is the right
solution. Another problem that has not yet been mentioned is context scalability.
Since multihoming creates context per remote communicating host, it is important
to know how many contexts can be maintained at the same time before the local
host runs out of memory. Suppose a large site like YouTube, that processes hundred
millions of video streams a day, becomes multihomed with Shim6. With such large
numbers, context scalability becomes an issue.

Appendix A

List of abbreviations

BGP-4 Border Gateway Protocol version 4
A routing information protocol used to announce routes between autonomous
systems, for example between service providers.

BU message Binding Update message
A message used to annouce mappings between HoA and Coa addresses in
MIPv6.

CGA Cryptographically Generated Addresses
A form of IPv6 address where the interface identifier is derived from a cryp-
tographic hash of the public key.

CoA Care-of Address
An IP address serving as locator for a mobile node in MIPv6.

DHCP Dynamic Host Configuration Protocol
A protocol used by computers to request and obtain IP addresses and other
addressing information from a DHCP server.

FII Forked Instance Identifier
A number to identify forked Shim6 contexts, in order to handle context fork-
ing.

FSM Finite State Machine
A model of behavior composed of a finite number of states, transitions be-
tween those states, and actions.

HBA Hash Based Addresses
A form of IPv6 address where the interface identifier is derived from a cryp-
tographic hash of all the prefixes assigned to the host.

73

74 A. List of abbreviations

HIP Host Identity Protocol
A method of separating the end-point identifier and locator roles of IP ad-
dresses, realizing strong authentication between hosts at TCP/IP stack level.

HoA Home Address
An IP address serving as a stable end point identifier for a mobile node in
MIPv6.

ICMP Internet Control Message Protocol
An extension to IP, allowing the generation of error messages, test packets
and informational messages related to IP.

IEEE Institute of Electrical and Electronics Engineers
An organization composed of engineers, scientists, and students, best known
for developing standards for the computer and electronics industry.

IETF Internet Engineering Task Force
A large open international community of network designers, operators, ven-
dors, and researchers concerned with the evolution of the Internet architecture
and the smooth operation of the Internet.

IESG Internet Engineering Steering Group
A committee formed to help the IETF chair.

IP Internet Protocol
A data-oriented protocol that is encapsulated in the network stack of a com-
puter, used for communicating data across packet-switched networks.

IPSec IP Security
A suite of protocols for securing IP communications by means of authentica-
tion and encryption.

IPv4 Internet Protocol version 4
Version 4 of the Internet Protocol.

IPv6 Internet Protocol version 6
Version 6 of the Internet Protocol.

MIPv6 Mobile IPv6
An extension to the IPv6 standard to support Internet connection for wireless
devices, such as mobile phones or notebooks. MIPv6 preserves communication
between nodes that move around in the network.

NAT Network Address Translation
A technique in which IP addresses are rewritten as they pass through a router
or firewall, enabling a local-area network (LAN) to use one set of IP addresses
for internal traffic.

75

OSI model Open Systems Interconnection Basic Reference Model
An abstract description for computer network protocol and network stack de-
sign.

PA space Provider Assigned address space
A block of IP addresses assigned to an end-user by a service provider.

PI space Provider Independent address space
A block of IP addresses assigned to an end-user directly by a Registry, with-
out going through an service provider.

PDS Parameter Data Structure
The information that CGA and HBA exchanges in order to inform the peer
of how the interface identifier was computed.

REAP Reachability Protocol
The mechanisms and protocol messages to achieve failure detection and loca-
tor pair exploration.

RFC Request For Comments
A document describing an informal Internet standard.

RIR Regional Internet Registry
An organization overseeing the allocation and registration of Internet number
resources within a region.

Shim6 Site Multihoming by IPv6 Intermediation
A network layer protocol for providing IPv6 multihoming, without the use of
PI space.

SYN Synchronize
A type of packet used by TCP.

TCP Transmission Control Protocol
A transport layer protocol that transmits multiple packet data between ap-
plications. TCP is a reliable, connection-oriented protocol that enables two
hosts to establish a connection and exchange streams of data.

TCP/IP stack Transmission Control Protocol/Internet Protocol stack
A set of communications protocols that implements the protocol stack on
which the Internet runs.

UCL Universite catholique de Louvain
University of Louvain, a code base for Shim6.

UDP User Datagram Protocol
A transport layer protocol that transmits multiple packet data between ap-
plications. UDP is an unreliable, connectionless protocol that, unlike TCP,
does not guarantee packet delivery.

76 A. List of abbreviations

ULID Upper Layer Identifier
An IP address serving as a stable end point identifier for a Shim6 enabled host.

ULP Upper Layer Protocol
A protocol running on top of IP.

Appendix B

Adjustments to the Shim6 model

B.1 Updated context establishment

The context establishment model did not satisfy the properties and some adjust-
ments had to be made. These modifications are also made retroactively in the full
context establishment model. First of all, retransmitting I2 and I2bis messages is
no longer optional. This means that the loop transitions in locations i2sent and
i2bissent that resets the clock y are removed, as illustrated in Fig. B.1.

Updating the context clock and and the actions triggered when receiving pay-
load had to be changed in the function contextlookup in the declarations of
the Dispatcher. When receiving payload and the context is in location i2sent or
i2bissent, the host does not longer reply with R2. Updating the context clock now
happens every time the context is consulted, so it moves to the top of the function
body:

void contextlookup() {
send = NO_SHIM;

goto = NOWHERE;

peer = UseIP[p.src];
ctx_clock[i][peer] = 0; // moved to the top

// section 12.1
if (p.shim6.type == PAYLOAD) {

if (p.shim6.payload.ct_recv != ct_nil and p.shim6.payload.ct_recv == ctx_CTl[i][peer]) {
if (ctx_state[i][peer] == I2SENT)

send = I2; // send I2 instead of R2
else if (ctx_state[i][peer] == I2BISSENT)

send = I2bis; // send I2bis instead of R2

else if (ctx_state[i][peer] == EFAILED or ctx_state[i][peer] == NOSUPPORT)
send = R1bis;

}
else if (ctx_state[i][peer] == IDLE or ctx_state[i][peer] == EFAILED or

ctx_state[i][peer] == NOSUPPORT)
send = R1bis;// generate R1bis

}

...

}

77

78 B. Adjustments to the Shim6 model

failed
y <= to

i2bissent
y <= I2BIS_TIMEOUT

established

ctx_clock[i][peer]
 <= TEARDOWN_TIMEOUT

i2sent
y <= I2_TIMEOUT

i1sent
y <= I1_TIMEOUT

idleupdate[i][peer][ESTABLISHED]?
allocate_ctx(nonce_nil),
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

update[i][peer][ESTABLISHED]?
allocate_ctx(nonce_nil),
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

n:NonceType
n != nonce_nil

update[i][peer][I2BISSENT]?

recover_ctx(n),
y = 0,
tries = 0

ctx_clock[i][peer] >= TEARDOWN_TIMEOUT
teardown_ctx()

n:NonceType
n != nonce_nil and
tries > I2BIS_RETRIES_MAX and
y >= I2BIS_TIMEOUT
fallback_ctx(n),
y = 0,
tries = 0

tries <= I2BIS_RETRIES_MAX and
y >= I2BIS_TIMEOUT
msg_send!
send_i2bis(),
y = 0,
tries++

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0 n:NonceType

n != nonce_nil and
tries > I2_RETRIES_MAX and
y >= I2_TIMEOUT
fallback_ctx(n),
y = 0,
tries = 0

ctx_clock[i][peer] >= to
ctx_ULIDl[i][peer] = ipv6_nil,
ctx_ULIDp[i][peer] = ipv6_nil,
to = 0

tries > 0
update[i][peer][NOSUPPORT]?
fail_ctx(NOSUPPORT),
y = 0,
to = ICMP_HOLDDOWN_TIME

tries > I1_RETRIES_MAX and
y >= I1_TIMEOUT
fail_ctx(EFAILED),
y = 0,
to = NO_R1_HOLDDOWN_TIME

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(p.shim6.type),
ctx_clock[i][peer] = 0

tries <= I2_RETRIES_MAX and
y >= I2_TIMEOUT
msg_send!
send_i2(),
y = 0,
tries++

n:NonceType
n != nonce_nil and
tries > 0
update[i][peer][I2SENT]?
update_ctx(n),
y = I2_TIMEOUT,
tries = 0

tries <= I1_RETRIES_MAX and
y >= I1_TIMEOUT
msg_send!
send_i1(),
y = 0,
tries++

n:NonceType
heuristics[i][peer] and
n != nonce_nil
urg!
allocate_ctx(n),
y = I1_TIMEOUT,
tries = 0

Figure B.1: The updated automaton Context[i][peer]

B.2. Abstracted context establishment 79

B.2 Abstracted context establishment

This section describes the abstractions that have been applied to the model, so that
verification can be fulfilled.

B.2.1 Packet structure

The full model follows the message formats in the draft. For every message format, a
new structure is defined. Because many elements return in different message formats,
the packet can also be implemented as one C-struct:

typedef struct {

IPv6Type src;
IPv6Type dest;

Type type;
ContextTagType ct1; // for common ct
ContextTagType ct2; // for r1bis ct

NonceType n1; // for request, initiator nonce
NonceType n2; // for responder nonce

IPv6Type ULID_src;
IPv6Type ULID_dest;
bool Ls[IPv6Type];

ValidatorType v_resp;
} ipv6_packet;

Instead of the 44 + 3m packet variables in the full model, now only 9 + 6 + m
packet variables per automaton need to be maintained, m being the number of IPv6
addresses in the model. This obscures the reality of the model, but no behavioral
changes have been made. This also simplifies our functions that clear packet data:

void vzero(ValidatorType &vt) {
vt.ct_init = ct_nil;

vt.n_resp = nonce_nil;
vt.ULID_src = ipv6_nil;
vt.ULID_dest = ipv6_nil;

vt.Lp_src = ipv6_nil;
vt.Lp_dest = ipv6_nil;

}

void pzero() {
p.src = ipv6_nil;
p.dest = ipv6_nil;

p.type = NO_SHIM;
p.ct1 = ct_nil;

p.ct2 = ct_nil;
p.n1 = nonce_nil;
p.n2 = nonce_nil;

p.ULID_src = ipv6_nil;
p.ULID_dest = ipv6_nil;

vzero(p.v_resp);

for(i:IPv6Type)
p.Ls[i] = false;

}

B.2.2 Merging locations i2sent and i2bissent

The location i2bissent bears resemblance to location i2sent. Basically, the only
difference between the two states is that they retransmit different messages. In order
to be able to merge the locations, the function send_i2 needs to be modified:

80 B. Adjustments to the Shim6 model

void send_i2() {

pzero();

p.src = ctx_Lpl[i][peer];
p.dest = ctx_Lpp[i][peer];

if (i2b) {
ctx_state[i][peer] = I2BISSENT;

p.type = I2bis;
p.ct2 = ctx_CTr1bis[i][peer];

} else {
ctx_state[i][peer] = I2SENT;
p.type = I2;

}

p.ct1 = ctx_CTl[i][peer];
p.n1 = ctx_noi[i][peer];
p.n2 = ctx_nor[i][peer];

p.v_resp = ctx_var[i][peer];
if (ctx_ULIDl[i][peer] != ctx_Lpl[i][peer] or ctx_ULIDp[i][peer] != ctx_Lpp[i][peer]) {

p.ULID_src = ctx_ULIDl[i][peer];
p.ULID_dest = ctx_ULIDp[i][peer];

}
for (j:IPv6Type)

p.Ls[j] = ctx_Lsl[i][peer][j];

}

Fig. B.2 shows how the locations have been merged. The following constants can
be removed from the global declarations:

const int I2BIS_TIMEOUT = 4; // seconds

const int I2BIS_RETRIES_MAX = 2;

B.2.3 All Shim6 enabled hosts

In the model, only Shim6 enabled hosts participate. This means that a context will
never move to the location failed by means of no Shim6 support at the remote
host. This can be verified by adding a boolean nosupp that is set true only if the
“no support” transition is taken. The property A[] not nosupp will now be satis-
fied. This means that this transition can safely be removed, as well as all constant
values and variables that deal with no support detection. The abstracted Context

automaton, illustrated in Fig. B.2, does not behave differently than the full context
establishment model.

The following constants can be removed from the global declarations:

const int ICMP_HOLDDOWN_TIME = 600; // seconds
const int NOSUPPORT = 7;

const int ICMP = 10;

B.2. Abstracted context establishment 81

failed
y <= NO_R1_HOLDDOWN_TIME

established
ctx_clock[i][peer]
 <= TEARDOWN_TIMEOUT

i2sent
y <= I2_TIMEOUT

i1sent
y <= I1_TIMEOUT

idle

update[i][peer][ESTABLISHED]?
allocate_ctx(nonce_nil),
establish_ctx(),
ctx_clock[i][peer] = 0

update[i][peer][ESTABLISHED]?
allocate_ctx(nonce_nil),
establish_ctx(),
ctx_clock[i][peer] = 0

n:NonceType
n != nonce_nil
update[i][peer][I2BISSENT]?
recover_ctx(n),
y = I2_TIMEOUT,
tries = 0

ctx_clock[i][peer] >= TEARDOWN_TIMEOUT
teardown_ctx()

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(),
ctx_clock[i][peer] = 0

n:NonceType
n != nonce_nil and
tries > I2_RETRIES_MAX and
y >= I2_TIMEOUT
fallback_ctx(n),
y = 0,
tries = 0

y >= NO_R1_HOLDDOWN_TIME
teardown_ctx()

tries > I1_RETRIES_MAX and
y >= I1_TIMEOUT
fail_ctx(EFAILED),
y = 0

tries > 0
update[i][peer][ESTABLISHED]?
establish_ctx(),
ctx_clock[i][peer] = 0

tries <= I2_RETRIES_MAX and
y >= I2_TIMEOUT
msg_send!
send_i2(),
y = 0,
tries++

n:NonceType
n != nonce_nil and
tries > 0
update[i][peer][I2SENT]?
update_ctx(n),
y = I2_TIMEOUT,
tries = 0

tries <= I1_RETRIES_MAX and
y >= I1_TIMEOUT
msg_send!
send_i1(),
y = 0,
tries++

n:NonceType
heuristics[i][peer] and
n != nonce_nil
urg!
allocate_ctx(n),
y = I1_TIMEOUT,
tries = 0

Figure B.2: The abstracted automaton Context[i][peer]

B.2.4 No context forking

Context forking is not yet widely discussed in the draft, and it was not considered
in the full model. However, it did provide variables to expand the model with this
functionality. The model satisfies the property:

A[] forall(h1:HostType) forall(h2:HostType) ctx_FII[h1][h2] == 0

proving that no forked contexts exist. All variables that consider context forking
can be safely removed.

Bibliography

[Abl03] Abley, J. and Black B. and Gill, V. Goals for IPv6 Site-Multihoming
Architectures, August 2003.

[Abl05] Abley, J. and Lindqvist, K. and Davies, E. and Black B. and Gill, V. IPv4
Multihoming Practices and Limitations, July 2005.

[Ada06] Adams, K. and Agesen, O. A comparison of Software and Hardware Tech-
niques for x86 Virtualization. In Proceedings of the 12th international
conference on Architectural support for programming languages and op-
erating systems, pages 2–13. ACM Press, October 2006.

[Alu94] Alur, R. and Dill, A. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[Ark06] Arkko, J. and Beijnum, I. van. Failure Detection and Locator Pair Explo-
ration Protocol for IPv6 Multihoming, December 2006.

[Aur05] Aura, T. Cryptographically Generated Addresses (CGA), March 2005.

[Bag05] Bagnulo, M. Hash Based Addresses (HBA), October 2005.

[Bar06] Barre, S. and Bonaventure, O. Developpement d’extensions au Kernel
Linux pour supporter le multihoming IPv6. Technical report, Universite
Catholique de Louvain, June 2006.

[Beh04] Behrmann, G. and David, A. and Larsen, K.G. A tutorial on Uppaal.
In Marco Bernardo and Flavio Corradini, editor, Formal Methods for the
Design of Real-Time Systems: 4th International School on Formal Meth-
ods for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer–Verlag,
September 2004.

[Bra96] Bradner, S. The Internet Standards Process – Revision 3, October 1996.

[Bra97] Bradner, S. Key words for use in RFCs to Indicate Requirement Levels,
March 1997.

[Car96] Carpenter, B. and Rekhter, Y. Renumbering Needs Work, February 1996.

[Cla91] Clark, D. and Chapin, L. and Cerf, V. and Braden, R. and Hobby, R.
Towards the Future Internet Architecture, December 1991.

[Con98] Conta, A. and Deering, S. Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification, December 1998.

[Dee98] Deering, S. and Hinden, R. Internet Protocol, Version 6 (IPv6) Specifica-
tion, December 1998.

[Dil93] Dill, D.L. and Ip, C.N. Better Verification Through Symmetry. In D. Ag-
new, L. Claesen and R. Camposano, editor, Computer Hardware Descrip-
tion Languages and their Applications, number 32 in A, pages 87–100,

83

84 BIBLIOGRAPHY

Ottawa, Canada, April 1993. Elsevier Science Publishers B.V., Amster-
dam, Netherland.

[Dra03] Draves, R. Default Address Selection for Internet Protocol version 6
(IPv6), February 2003.

[Edd06] Eddy, W. TCP SYN Flooding Attacks and Common Mitigations, Decem-
ber 2006.

[Hen03] Hendriks, M. and Behrmann, G. and Larsen, K.G. and Niebert, P. and
Vaandrager, F.W. Adding symmetry reduction to uppaal. In Kim Gul-
strand Larsen and Peter Niebert, editor, FORMATS, number 2791, pages
46–59. Springer, 2003.

[Hen06] Henderson, T. and Ahrenholz, J. OpenHIP 0.4.1. Technical report, In-
ternet Engineering Task Force, Internet Research Task Force, December
2006.

[Joh04] Johnson, D. and Perkins, C. and Arkko, J. Mobility support in IPv6,
January 2004.

[Lam07] Lamping, U. Wireshark Developer’s Guide. Technical report, Wireshark,
2007.

[Mey06] Meyer, D. and Zhang, L. and Fall, K. Report from the IAB Workshop on
Routing and Adressing, December 2006.

[Nor06] Nordmark, E. and Bagnulo, M. Level 3 multihoming shim protocol, May
2006.

[Rek06] Rekhter, Y. and Li, T. and Hares, S. A Border Gateway Protocol (BGP-4),
January 2006.

[Sav05] Savola P. and Chown T. A Survey of IPv6 Site Multihoming Proposals.
In Proceedings of the 8th International Conference of Telecommunications
(ConTEL 2005), pages 41–48, June 2005.

[Tae06] Taewan, Y. SHIM6 Implementation. Technical report, Electronic Telecom-
munications Researching Institute, July 2006.

[van03] van Langevelde, I. and Romijn, J. and Goga, N. Founding FireWire bridges
through Promela prototyping. In Parallel and Distributed Processing Sym-
posium, 2003, pages 307–320, April 2003.

[Yor00] Yorav, K. Exploiting Syntactic Structure for Automatic Verification. PhD
thesis, June 2000.

